We used two-dimensional electrophoresis (2-DE) and other proteomic approaches to identify proteins expressed in suspension-cultured rice cells in response to the rice blast fungus, Magnaporthe grisea. Proteins were extracted from suspension-cultured cells at 24 and 48 h after rice blast fungus inoculation or treatment with elicitor or other signal molecules such as jasmonic acid (JA), salicylic acid, and H(2)O(2). The proteins were then polyethylene glycol fractionated before separation by 2-DE. Fourteen protein spots were induced or increased by the treatments, which we analyzed by N-terminal or internal amino acid sequencing. Twelve proteins from six different genes were identified. Rice pathogen-related protein class 10 (OsPR-10), isoflavone reductase like protein, beta-glucosidase, and putative receptor-like protein kinase were among those induced by rice blast fungus; these have not previously been reported in suspension-cultured rice cells. Six isoforms of probenazole-inducible protein (PBZ1) and two isoforms of salt-induced protein (SalT) that responded to blast fungus, elicitor, and JA were also resolved on a 2-DE gel and identified by proteome analysis. The expression level of these induced proteins both in suspension-cultured cells and in leaves of whole plants was analyzed by Western blot. PBZ1, OsPR-10, and SalT proteins from incompatible reactions were induced earlier and to a greater extent than those in compatible reactions. Proteome analysis can thus distinguish differences in the timing and amount of protein expression induced by pathogens and other signal molecules in incompatible and compatible interactions.
Sound vibration (SV) is considered as an external mechanical force that modulates plant growth and development like other mechanical stimuli (e.g., wind, rain, touch and vibration). A number of previous and recent studies reported developmental responses in plants tailored against SV of varied frequencies. This strongly suggests the existence of sophisticated molecular mechanisms for SV perception and signal transduction. Despite this there exists a huge gap in our understanding regarding the SV-mediated molecular alterations, which is a prerequisite to gain insight into SV-mediated plant development. Herein, we investigated the global gene expression changes in Arabidopsis thaliana upon treatment with five different single frequencies of SV at constant amplitude for 1 h. As a next step, we also studied the SV-mediated proteomic changes in Arabidopsis. Data suggested that like other stimuli, SV also activated signature cellular events, for example, scavenging of reactive oxygen species (ROS), alteration of primary metabolism, and hormonal signaling. Phytohormonal analysis indicated that SV-mediated responses were, in part, modulated by specific alterations in phytohormone levels; especially salicylic acid (SA). Notably, several touch regulated genes were also up-regulated by SV treatment suggesting a possible molecular crosstalk among the two mechanical stimuli, sound and touch. Overall, these results provide a molecular basis to SV triggered global transcriptomic, proteomic and hormonal changes in plant.
Transcriptional repression of pathogen defense-related genes is essential for plant growth and development. Several proteins are known to be involved in the transcriptional regulation of plant defense responses. However, mechanisms by which expression of defense-related genes are regulated by repressor proteins are poorly characterized. Here, we describe the in planta function of CBNAC, a calmodulin-regulated NAC transcriptional repressor in Arabidopsis. A T-DNA insertional mutant (cbnac1) displayed enhanced resistance to a virulent strain of the bacterial pathogen Pseudomonas syringae DC3000 (PstDC3000), whereas resistance was reduced in transgenic CBNAC overexpression lines. The observed changes in disease resistance were correlated with alterations in pathogenesis-related protein 1 (PR1) gene expression. CBNAC bound directly to the PR1 promoter. SNI1 (suppressor of nonexpressor of PR genes1, inducible 1) was identified as a CBNAC-binding protein. Basal resistance to PstDC3000 and derepression of PR1 expression was greater in the cbnac1 sni1 double mutant than in either cbnac1 or sni1 mutants. SNI1 enhanced binding of CBNAC to its cognate PR1 promoter element. CBNAC and SNI1 are hypothesized to work as repressor proteins in the cooperative suppression of plant basal defense.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.