We have successfully fabricated triacetylcellulose (TAC) polymer-silica nanocomposite films having up to 40 wt % of incorporated silica nanoparticles by deliberately designing a surface ligand that has a structure similar to that of polymer repeating units and effectively modifying the surface of silica nanoparticles through chemical bonding. Cross-sectional TEM analysis reveals no significant aggregation in all TAC-silica nanocomposite films. Thermal analysis results suggested that TAC-silica nanocomposites had higher T(g) and T(c) values as compared to pure TAC, and the increase in T(g) and T(c) was affected by the silica content. The transparency of all the nanocomposite films was over 80% in the visible range, confirming the excellent compatibility of nanoparticles with TAC. In this study, we enhance the interaction between nanoparticles and polymer matrices by modifying the surface of nanoparticles with a ligand that has a structure similar to that of polymer repeating units. It is expected that this method can be applied to other polymer systems to develop useful nanocomposites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.