Well-documented experimental evidence from both in vitro and in vivo models of stroke strongly supports the critical involvement of NMDA receptor-mediated excitotoxicity in neuronal damage after stroke. Despite this, the results of clinical trials testing NMDA receptor antagonists as neuroprotectants after stroke and brain trauma have been discouraging. Here, we report that in mature cortical cultures, activation of either synaptic or extrasynaptic NR2B-containing NMDA receptors results in excitotoxicity, increasing neuronal apoptosis. In contrast, activation of either synaptic or extrasynaptic NR2A-containing NMDA receptors promotes neuronal survival and exerts a neuroprotective action against both NMDA receptor-mediated and non-NMDA receptor-mediated neuronal damage. A similar opposing action of NR2B and NR2A in mediating cell death and cell survival was also observed in an in vivo rat model of focal ischemic stroke. Moreover, we found that blocking NR2B-mediated cell death was effective in reducing infarct volume only when the receptor antagonist was given before the onset of stroke and not 4.5 h after stroke. In great contrast, activation of NR2A-mediated cell survival signaling with administration of either glycine alone or in the presence of NR2B antagonist significantly attenuated ischemic brain damage even when delivered 4.5 h after stroke onset. Together, the present work provides a molecular basis for the dual roles of NMDA receptors in promoting neuronal survival and mediating neuronal damage and suggests that selective enhancement of NR2A-containing NMDA receptor activation with glycine may constitute a promising therapy for stroke.
Glycogen synthase kinase-3 (GSK3) has been implicated in major neurological disorders, but its role in normal neuronal function is largely unknown. Here we show that GSK3beta mediates an interaction between two major forms of synaptic plasticity in the brain, N-methyl-D-aspartate (NMDA) receptor-dependent long-term potentiation (LTP) and NMDA receptor-dependent long-term depression (LTD). In rat hippocampal slices, GSK3beta inhibitors block the induction of LTD. Furthermore, the activity of GSK3beta is enhanced during LTD via activation of PP1. Conversely, following the induction of LTP, there is inhibition of GSK3beta activity. This regulation of GSK3beta during LTP involves activation of NMDA receptors and the PI3K-Akt pathway and disrupts the ability of synapses to undergo LTD for up to 1 hr. We conclude that the regulation of GSK3beta activity provides a powerful mechanism to preserve information encoded during LTP from erasure by subsequent LTD, perhaps thereby permitting the initial consolidation of learnt information.
The maintenance of long-term memory in hippocampus, neocortex and amygdala requires the persistent action of the atypical protein kinase C isoform, protein kinase Mzeta (PKMzeta). We found that inactivating PKMzeta in the amygdala impaired fear memory in rats and that the extent of the impairment was positively correlated with a decrease in postsynaptic GluR2. Blocking the GluR2-dependent removal of postsynaptic AMPA receptors abolished the behavioral impairment caused by PKMzeta inhibition and the associated decrease in postsynaptic GluR2 expression, which correlated with performance. Similarly, blocking this pathway for removal of GluR2-containing receptors from postsynaptic sites in amygdala slices prevented the reversal of long-term potentiation caused by inactivating PKMzeta. Similar behavioral results were obtained in the hippocampus for unreinforced recognition memory of object location. Together, these findings indicate that PKMzeta maintains long-term memory by regulating the trafficking of GluR2-containing AMPA receptors, the postsynaptic expression of which directly predicts memory retention.
Dendritic spines show rapid motility and plastic morphology, which may mediate information storage in the brain. It is presently believed that polymerization/ depolymerization of actin is the primary determinant of spine motility and morphogenesis. Here, we show that myosin IIB, a molecular motor that binds and contracts actin filaments, is essential for normal spine morphology and dynamics and represents a distinct biophysical pathway to control spine size and shape. Myosin IIB is enriched in the postsynaptic density (PSD) of neurons. Pharmacologic or genetic inhibition of myosin IIB alters protrusive motility of spines, destabilizes their classical mushroom-head morphology, and impairs excitatory synaptic transmission. Thus, the structure and function of spines is regulated by an actin-based motor in addition to the polymerization state of actin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.