In a simulation study of inference on population pharmacokinetic parameters, two methods of performing tests of hypotheses comparing two populations using NONMEM were evaluated. These two methods are the test based upon 95% confidence intervals and the likelihood ratio test. Data were simulated according to a monoexponential model and, in that context, power curves for each test were generated for (i) the ratio of mean clearance and (ii) the ratio of the population standard deviations of clearance. To generate the power curves, a range of these parameters was employed; other pharmacokinetic parameters were selected to reflect the variability typically present in a Phase II clinical trial. For tests comparing the means, the confidence interval tests had approximately the same power as the likelihood ratio tests and were consistently more faithful to the nominal level of significance. For comparison of the standard deviations, and when the volume of information available was relatively small, however, the likelihood ratio test was more able to detect differences between the two groups. These results were then compared to results on parameter estimation in order to gain insight into the question of power. As an example, the nonnormality of estimates of the ratio of standard deviations plays an important role in explaining the low power for the confidence interval tests. We conclude that, except for the situation of modeling standard deviations with only sparse information, NONMEM produces tests of significance that are effective at detecting clinically significant differences between two populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.