The formation of BaCeO3 and its effects on microstructure were studied in sintered/melt-textured Y-Ba-Cu-O oxides containing 5 wt. % CeO2 and various amounts of Y2Ba1Cu1O5. The added CeO2 was converted to fine particles of BaCeO3 near 930 °C, which is the conventional sintering temperature for Y-Ba–Cu-O. Y2Ba1Cu1O5 and CuO are formed as by-products of the reaction between CeO2 and Y1Ba2Cu3O7−y phase. The CeO2 addition reduced the particle size of Y2Ba1Cu1O5 which was trapped in the Y1Ba2Cu3O7−y matrix after the melt-texture growth. During the peritectic decomposition stage of Y1Ba2Cu3O7−y phase into Y2Ba1Cu1O5 and liquid phase, the morphology of the decomposed Y2Ba1Cu1O5 was changed from a blocky shape in the undoped sample to an acicular shape of high anisotropy in the CeO2-added sample. The formation of the highly anisotropic Y2Ba1Cu1O5 particles appears to be responsible for the refinement of Y2Ba1Cu1O5 particle after the melt-texture processing.
Formation of the high-T
c phase in the (Bi, Pb)-Sr-Ca-Cu-O system was studied using specimens with various Bi/Pb ratios. The synthesis temperature was suppressed as the Pb/(Pb+Bi) was increased. The lattice constant of the c axis of the low-T
c phase (T
c∼80 K) and high-T
c phase (T
c∼105 K) increased with increasing Pb content. Substitution of 30% Pb for Bi was found to be most preferential for the formation of the high-T
c phase.
In order to investigate microstructural variation by 2-1-1 addition in partially melted Y–Ba–Cu–O, a specimen resulting from 2-1-1 added to 1-2-3 was heat-treated through the peritectic temperature. Microstructure was observed on the directionally solidified region near the interface of the two samples. The 2-1-1 addition results in a homogeneous microstructure where no remnant liquid phase is present. It reduced the 1-2-3 plate thickness, as well as suppressed the formation of microcracks due to the tetragonal-to-orthorhombic phase transition or the thermal contraction during cooling from the peritectic temperature. The formation of microcracks induced by the phase transition seems to be closely related to the process of oxygen diffusion into a sample. We discuss the formation of microcracks in terms of the oxygen diffusion along the plate boundaries and of the thickness of 1-2-3 plates. The decrease in the plate thickness and the fine dispersion of 2-1-1 particles contribute suppression of the formation of microcracks and their propagation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.