Exercise fatigue can exert deleterious effects on the body. This study evaluated the effects and mechanisms by which Lonicera caerulea berry polyphenols extract (LCBP) improved the treadmill endurance of mice. Comparison was performed between the effects at 25°C and low temperatures (-5°C). Energy storage, product metabolism, and other biochemical indices were determined using vitamin C (VC) as a positive control. Co-immunoprecipitation was performed to detect the interaction between different proteins. Dietary supplementation with LCBP significantly prolonged the exhaustion time during treadmill exercise by 20.4% (25 °C) and 27.4% (-5 °C). LCBP significantly regulated the expression of antioxidant and inflammatory proteins, Bcl-2 /Bax apoptosis proteins, and the PKCα -NOx2 / Nox4 pathway proteins, and activated the expression of AMPK-PGC1α -NRF1-TFAM proteins in skeletal muscle mitochondria. The gene and protein expression of miRNA-133a/IGF-1/PI3K/Akt/mTOR in skeletal muscle cells was also activated. Molecular docking confirmed that the main components of LCBP such as cyanidin-3-glucoside, catechin, and chlorogenic acid, have strong binding affinity toward AMPKα. LCBP alleviates exercise fatigue in mice by reducing oxidative stress, inflammation, and apoptosis of skeletal muscle cells, enhances mitochondrial biosynthesis and cell proliferation, reduces fatigue, and enhances performance. These effects are also significant in a low-temperature environment (Graphical Abstract). Consequently, these results provide novel insights into the anti- fatigue roles of LCBP in exercise fatigue.
Background. This study establishes the shoulder model on the drawing side of recurve archers by the finite element method and finds out the stress changes on the rotator cuff muscles in the position of the humerus and scapula under different stages of special techniques. The aim of this study is to investigate the mechanism of rotator cuff damage on a recurve archer’s drawing arm. Methods. A 22-year-old healthy male’s shoulder CT and MRI data were collected, and the drawing side shoulder joint finite element model was constructed, which contains the structure of the shoulder blades, clavicle, humerus, supraspinatus, infraspinatus, teres minor, and subscapularis. The humerus on the drawing arm was simulated to raising the bow, drawing, holding, and releasing on the scapula plane, and stress changes in rotator cuff muscles are analyzed. Results. The peak stress on the infraspinatus increased slowly, and from the start of raising the bow to hold and release, the stress peak increased from 0.007 MPa to 0.009 MPa. The peak stress on teres minor rises slowly from 0.003 MPa at the start of raising the bow to 0.010 MPa at the moment of releasing. The peak stress in the subscapularis increased from 0.096 MPa to 0.163 MPa between the start of raising the bow and releasing. The peak stress on the supraspinatus varied greatly, and from the start of raising the bow to the start of drawing, the stress peak increased markedly from 1.159 MPa to 1.395 MPa. Subsequently, the stress peak immediately decreased to 1.257 MPa at the start of holding and then increased to 1.532 MPa at releasing. Conclusion. The position of the humerus and scapula would change with the different stages of special techniques. It causes stress changes in the rotator cuff muscles, and when the stress accumulates over time, the shoulder 5on the drawing side will gradually become injured and dysfunctional. In combination with the depth of the structural site and the surrounding structural features, corrective exercises can be used to prevent injury to the rotator cuff muscles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.