Abstract-We recently showed that phosphoinositide-3-kinase-␥-deficient (PI3K␥ Ϫ/Ϫ ) mice have enhanced cardiac contractility attributable to cAMP-dependent increases in sarcoplasmic reticulum (SR) Ca 2ϩ content and release but not L-type Ca 2ϩ current (I Ca,L ), demonstrating PI3K␥ locally regulates cAMP levels in cardiomyocytes. Because phosphodiesterases (PDEs) can contribute to cAMP compartmentation, we examined whether the PDE activity was altered by PI3K␥ ablation. Selective inhibition of PDE3 or PDE4 in wild-type (WT) cardiomyocytes elevated Ca 2ϩ transients, SR Ca 2ϩ content, and phospholamban phosphorylation (PLN-PO 4 ) by similar amounts to levels observed in untreated PI3K␥
Rationale
Baseline contractility of mouse hearts is modulated in a PI3Kγ-dependent manner by type 4 phosphodiesterases (PDE4), which regulate cAMP levels within microdomains containing the sarcoplasmic reticular (SR) calcium-ATPase (SERCA2a).
Objective
To determine whether PDE4D regulates basal cAMP levels, phospholamban (PLN) phosphorylation and SERCA2a activity in SR microdomains.
Methods & Results
We assessed myocardial function in PDE4D-deficient (PDE4D−/−) and littermate wild-type (WT) mice at 10-12 weeks of age. Baseline cardiac contractility in PDE4D−/− mice was elevated in vivo and in Langendorff perfused hearts, while isolated PDE4D−/− cardiomyocytes showed increased Ca2+ transient amplitudes and SR Ca2+content, but unchanged ICa(L), compared to WT. The PKA inhibitor, Rp-cAMPS, lowered Ca2+ transient amplitudes and SR Ca2+ content in PDE4D−/− cardiomyocytes to WT levels. The PDE4 inhibitor rolipram (ROL) had no effect on cardiac contractility, Ca2+ transients or SR Ca2+ content in PDE4D−/− preparations but increased these parameters in WT hearts to levels indistinguishable from those in PDE4D−/−. The functional changes in PDE4D−/− myocardium were associated with increased PLN phosphorylation (pPLN) but not RyR2 receptor phosphorylation. ROL increased pPLN in WT cardiomyocytes to levels indistinguishable from those in PDE4D−/− cardiomyocytes. In murine and failing human hearts, PDE4D co-immunoprecipitated with SERCA2a but not with RyR2.
Conclusions
PDE4D regulates basal cAMP levels in SR microdomains through its interactions with SERCA2a-PLN. Since Ca2+ transient amplitudes are reduced in failing human myocardium, these observations may have therapeutic implications for patients with heart failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.