BackgroundPancreatic schwannoma is a rare tumor. Preoperative diagnosis of pancreatic schwannoma is challenging due to its tendency to mimic other lesions of the pancreas. We describe a case of pancreatic schwannoma and present a review of the cases currently reported in the English literature to identify characteristics of pancreatic schwannoma on imaging.Case presentationA 53-year-old male presented with a history of intermittent periumbilical abdominal pain and lower back pain for 1 week. Based on ultrasound (US) and computed tomography (CT) findings, we made a preoperative diagnosis of solid pseudopapillary tumor and performed a standard pancreaticoduodenectomy. Pathological examination showed that the tumor was composed of spindle cells with a palisading arrangement, and immunohistochemistry revealed strong positive staining for S-100 protein, which was consistent with a diagnosis of pancreatic schwannoma. At the 8-month follow-up visit, the patient was doing well without recurrent disease, and his abdominal pain had resolved.ConclusionsAlthough pancreatic schwannoma is rare, it should be included in the list of differential diagnoses of pancreatic masses, both solid and cystic. A tumor size larger than 6.90 cm, vascular encasement, or visceral invasion should elicit suspicion of malignant transformation.
High-power mode-programmable orbital angular momentum (OAM) beams have received substantial attention in recent years. They are widely used in optical communication, nonlinear frequency conversion, and laser processing. To overcome the power limitation of a single beam, coherent beam combining (CBC) of laser arrays is used. However, in specific CBC systems used to generate structured light with a complex wavefront, eliminating phase noise and realizing flexible phase modulation proved to be difficult challenges. In this paper, we propose and demonstrate a two-stage phase control method that can generate OAM beams with different topological charges from a CBC system. During the phase control process, the phase errors are preliminarily compensated by a deep-learning (DL) network, and further eliminated by an optimization algorithm. Moreover, by modulating the expected relative phase vector and cost function, all-electronic flexible programmable switching of the OAM mode is realized. Results indicate that the proposed method combines the characteristics of DL for undesired convergent phase avoidance and the advantages of the optimization algorithm for accuracy improvement, thereby ensuring the high mode purity of the generated OAM beams. This work could provide a valuable reference for future implementation of high-power, fast switchable structured light generation and manipulation.
High-power orbital angular momentum (OAM) beams have distinct advantages in improving capacity and data receiving for free-space optical communication systems at long distances. Utilizing the coherent combination of a beam array technique and helical phase approximation by a piston phase array, we have proposed a generating system for a novel high-power beam carrying OAM, which could overcome the power limitations of a common vortex phase modulator and a single beam. The characteristics of this generating method and the orthogonality of the generated OAM beams with different eigenstates have been theoretically analyzed and verified. Also a high-power OAM beam produced by coherent beam combination (CBC) of a six-element hexagonal fiber amplifier array has been experimentally implemented. Results show that the CBC technique utilized to control the piston phase differences among the array beams has a high efficiency of 96.3%. On the premise of CBC, we have obtained novel vortex beams carrying OAM of $\pm 1$ by applying an additional piston phase array modulation on the corresponding beam array. The experimental results agree approximately with the theoretical analysis. This work could be beneficial to areas that need high-power OAM beams, such as ultra-long distance free-space optical communications, biomedical treatments, and powerful trapping and manipulation under deep potential wells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.