A full numerical solution for the mixed elastohydrodynamic lubrication (EHL) in point contacts is presented in this paper, using a new numerical approach that is simple and robust, capable of handling three-dimensional measured engineering rough surfaces moving at different rolling and sliding velocities. The equation system and the numerical procedure are unified for a full coverage of all the lubrication regions including the full film, mixed and boundary lubrication. In the hydrodynamically lubricated areas the Reynolds equation is used. In the asperity contact areas, where the film thickness is zero, the Reynolds equation is reduced to an expression equivalent to the mathematical description of dry contact problem. In order to save computing time, a multi-level integration method is used to calculate surface deformation. Sample cases under severe condition show that this approach is capable of analyzing different cases in a full range of λ ratio, from infinitely large down to nearly zero (less than 0.03). [S0742-4787(00)00101-6]
A description of the methods used to build a high quality, comprehensive reference library of electron-ionization mass spectra is presented. Emphasis is placed on the most challenging part of this project--the improvement of quality by expert evaluation. The methods employed for this task were developed over the course of a spectrum-by-spectrum review of a library containing well over 100,000 spectra. Although the effectiveness of this quality improvement task depended critically on the expertise of the evaluators, a number of guidelines are discussed which were found to be effective in performing this onerous and often subjective task. A number of specific examples of the particularly challenging task of spectrum editing are given.
The geometry of micro-scale textures and the relative motion of surfaces in contact may affect the performance of an elastohydrodynamic lubrication interface. Reported in this paper are the investigations of the effects of texture bottom shape and surface relative motion on lubrication enhancement using numerically generated textures by means of model-based virtual texturing and numerical simulation. These textures are on one of the interacting surfaces in a triangular distribution and have the same density. The results suggest that the bottom shapes involving a micro-wedge and/or a micro-step bearing tend to yield thicker films. The lubrication of selected textured surfaces was also studied under three different relative motions: texture surface moving, un-textured surface moving, and both moving. The results indicate that textures on the faster moving surface offer stronger film thickness enhancement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.