BACKGROUND: Spodoptera frugiperda is an important invasive agricultural pest that causes huge economic losses worldwide. Gut microorganisms play a vital role in host feeding, digestion, nutrition, immunity, growth and insecticide resistance. Illumina high-throughput sequencing was used to study the gut microbial community dynamics across the life cycle (egg, 1st to 6th instar larvae, pupae, and male and female adults) of S. frugiperda fed on maize leaves. Furthermore, the gut microbial community and food intake of the 5th instar S. frugiperda larvae were studied after feeding them antibiotics.RESULTS: Enterobacteriaceae and Enterococcaceae dominated the gut during growth and feeding of the larvae. The relative abundance of Enterobacteriaceae was higher in the 4th and 6th instar larvae. With the increase in larval feeding, the relative abundance of Enterococcaceae gradually increased. In addition, principal coordinate analysis and linear discriminant effect size analysis confirmed differences in the structure of gut microbiota at different developmental stages. After antibiotic treatment, the relative abundance of Firmicutes, Proteobacteria and Fusobacteriota decreased. The relative abundance of Enterococcus and Klebsiella decreased significantly. Antibiotic treatment inhibited the gut flora of S. frugiperda, which decreased larval food intake and body weight gain, and prolonged the larval stage.CONCLUSION: The composition of the gut bacterial community plays an important role in the growth, development, and feeding of S. frugiperda. The results have a certain theoretical value for the development of bio-pesticides targeting intestinal flora.
Grapholita molesta is an important fruit tree worldwide pest which feeds on hosts extensively and does serious harm. In this paper, the growth and development parameters and protease activities of G. molesta fed on different hosts were compared. Using Illumina RNA sequencing technology, 18 midgut samples from five different hosts (apple, pear, plum, peach and peach shoots) and artificial diet were sequenced and compared with the reference genome, resulting in 15269 genes and 2785 predicted new genes. From 15 comparative combinations, DEGs were found from 286 to 4187 in each group, with up-regulated genes from 107 to 2395 and down-regulated genes from 83 to 2665. KEGG pathway analysis showed that DEGs were associated with amino acid metabolism, starch and sucrose metabolism, carbohydrate metabolism, and hydrolase activity. A total of 31 co-expression gene modules of different hosts were identified by WGCNA. qRT-PCR showed that the expression pattern of the trypsin gene was consistent with RNA sequencing. In this study, growth and development parameters, protease activity, DEGs, enrichment analysis and qRT-PCR were combined to reveal the adaptation process to different hosts of G. molesta in many aspects. The results of this study provide a basis for further exploration of the molecular mechanism of host adaptation of G. molesta.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.