We report improved whole-genome shotgun sequences for the genomes of indica and japonica rice, both with multimegabase contiguity, or almost 1,000-fold improvement over the drafts of 2002. Tested against a nonredundant collection of 19,079 full-length cDNAs, 97.7% of the genes are aligned, without fragmentation, to the mapped super-scaffolds of one or the other genome. We introduce a gene identification procedure for plants that does not rely on similarity to known genes to remove erroneous predictions resulting from transposable elements. Using the available EST data to adjust for residual errors in the predictions, the estimated gene count is at least 38,000–40,000. Only 2%–3% of the genes are unique to any one subspecies, comparable to the amount of sequence that might still be missing. Despite this lack of variation in gene content, there is enormous variation in the intergenic regions. At least a quarter of the two sequences could not be aligned, and where they could be aligned, single nucleotide polymorphism (SNP) rates varied from as little as 3.0 SNP/kb in the coding regions to 27.6 SNP/kb in the transposable elements. A more inclusive new approach for analyzing duplication history is introduced here. It reveals an ancient whole-genome duplication, a recent segmental duplication on Chromosomes 11 and 12, and massive ongoing individual gene duplications. We find 18 distinct pairs of duplicated segments that cover 65.7% of the genome; 17 of these pairs date back to a common time before the divergence of the grasses. More important, ongoing individual gene duplications provide a never-ending source of raw material for gene genesis and are major contributors to the differences between members of the grass family.
Interaction detection methods have led to the discovery of thousands of interactions between proteins, and discerning relevance within large-scale data sets is important to present-day biology. Here, a spectral method derived from graph theory was introduced to uncover hidden topological structures (i.e. quasi-cliques and quasi-bipartites) of complicated protein-protein interaction networks. Our analyses suggest that these hidden topological structures consist of biologically relevant functional groups. This result motivates a new method to predict the function of uncharacterized proteins based on the classification of known proteins within topological structures. Using this spectral analysis method, 48 quasi-cliques and six quasi-bipartites were isolated from a network involving 11,855 interactions among 2617 proteins in budding yeast, and 76 uncharacterized proteins were assigned functions.
NONCODE is an integrated knowledge database dedicated to non-coding RNAs (ncRNAs), that is to say, RNAs that function without being translated into proteins. All ncRNAs in NONCODE were filtered automatically from literature and GenBank, and were later manually curated. The distinctive features of NONCODE are as follows: (i) the ncRNAs in NONCODE include almost all the types of ncRNAs, except transfer RNAs and ribosomal RNAs. (ii) All ncRNA sequences and their related information (e.g. function, cellular role, cellular location, chromosomal information, etc.) in NONCODE have been confirmed manually by consulting relevant literature: more than 80% of the entries are based on experimental data. (iii) Based on the cellular process and function, which a given ncRNA is involved in, we introduced a novel classification system, labeled process function class, to integrate existing classification systems. (iv) In addition, some 1100 ncRNAs have been grouped into nine other classes according to whether they are specific to gender or tissue or associated with tumors and diseases, etc. (v) NONCODE provides a user-friendly interface, a visualization platform and a convenient search option, allowing efficient recovery of sequence, regulatory elements in the flanking sequences, secondary structure, related publications and other information. The first release of NONCODE (v1.0) contains 5339 non-redundant sequences from 861 organisms, including eukaryotes, eubacteria, archaebacteria, virus and viroids. Access is free for all users through a web interface at http://noncode.bioinfo.org.cn.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.