We demonstrate a robust flexible tactile actuator that is capable of working under high external pressures. The tactile actuator is based on a pyramidal microstructured dielectric elastomer layer inducing variation in both mechanical and dielectric properties. The vibrational performance of the actuator can be modulated by changing the geometric parameter of the microstructures. We evaluated the performance of the actuator under high-pressure loads up to 25 kPa, which is over the typical range of pressure applied when humans touch or manipulate objects. Due to the benefit of nonlinearity of the pyramidal structure, the actuator could maintain high mechanical output under various external pressures in the frequency range of 100–200 Hz, which is the most sensitive to vibration acceleration for human finger pads. The responses are not only fast, reversible, and highly durable under consecutive cyclic operations, but also large enough to impart perceivable vibrations for haptic feedback on practical wearable device applications.
Recently, various methods using, simultaneously, two types of tactile feedback have been proposed to emulate a real object. However, the possible masking effect when providing two types of tactile feedback has been scarcely reported. In this study, we investigated the masking effect caused by mechanical vibration on the perception of electrovibration. The absolute and difference thresholds of the electrovibration were measured according to the presence/absence, frequency, and intensity of the mechanical vibration. The absolute threshold of electrovibration tended to increase in the form of a ramp function, as the intensity of the masking stimulus (mechanical vibration) increased. Particularly, the masking effect was more remarkable when the frequency of both the target and the masking stimulus was the same (up to 13 dB increase with 25 dB SL masker). Furthermore, the difference in the threshold (average of 1.21 dB) did not significantly change due to the masking stimulus, when the sensation level intensity of the target stimulus was within the section following the Weber’s law. The results further indicated that electrovibration contributes to the activation of slowly adapting afferents as well. This investigation will provide important guidelines for the design of haptic interface that employs multiple types of tactile feedback.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.