A large number of putative cis-regulatory sequences have been annotated in the human genome, but the genes they control remain poorly defined. To bridge this gap, we generate maps of longrange chromatin interactions centered on 18,943 well-annotated promoters for protein-coding genes in 27 human cell/tissue types. We use this information to infer the target genes of 70,329 candidate regulatory elements, and suggest potential regulatory function for 27,325 non-coding sequence variants associated with 2,117 physiological traits and diseases. Integrative analysis of these promoter-centered interactome maps reveals widespread enhancer-like promoters involved in gene regulation and common molecular pathways underlying distinct groups of human traits and diseases.
Understanding the significance of genetic variants in the noncoding genome is emerging as the next challenge in human genomics. We used the power of 11,257 whole-genome sequences and 16,384 heptamers (7-nt motifs) to build a map of sequence constraint for the human species. This build differed substantially from traditional maps of interspecies conservation and identified regulatory elements among the most constrained regions of the genome. Using new Hi-C experimental data, we describe a strong pattern of coordination over 2 Mb where the most constrained regulatory elements associate with the most essential genes. Constrained regions of the noncoding genome are up to 52-fold enriched for known pathogenic variants as compared to unconstrained regions (21-fold when compared to the genome average). This map of sequence constraint across thousands of individuals is an asset to help interpret noncoding elements in the human genome, prioritize variants and reconsider gene units at a larger scale.
Three-dimensional (3D) chromatin structure is an emerging paradigm for understanding gene regulation mechanisms. Hi-C (high-throughput chromatin conformation capture), a method to detect long-range chromatin interactions, allows extensive genome-wide investigation of 3D chromatin structure. However, broad application of Hi-C data have been hindered by the level of complexity in processing Hi-C data and the large size of raw sequencing data. In order to overcome these limitations, we constructed a database named 3DIV (a 3D-genome Interaction Viewer and database) that provides a list of long-range chromatin interaction partners for the queried locus with genomic and epigenomic annotations. 3DIV is the first of its kind to collect all publicly available human Hi-C data to provide 66 billion uniformly processed raw Hi-C read pairs obtained from 80 different human cell/tissue types. In contrast to other databases, 3DIV uniquely provides normalized chromatin interaction frequencies against genomic distance dependent background signals and a dynamic browsing visualization tool for the listed interactions, which could greatly advance the interpretation of chromatin interactions. ‘3DIV’ is available at http://kobic.kr/3div.
Homeostasis of neutrophils—the blood cells that respond first to infection and tissue injury—is critical for the regulation of immune responses and regulated through granulopoiesis, a multi-stage process by which neutrophils differentiate from hematopoietic stem cells. Granulopoiesis is a highly dynamic process and altered in certain clinical conditions, such as pathologic and iatrogenic neutropenia, described as demand-adapted granulopoiesis. The regulation of granulopoiesis under stress is not completely understood because studies of granulopoiesis dynamics have been hampered by technical limitations in defining neutrophil precursors. Here, we define a population of neutrophil precursor cells in the bone marrow with unprecedented purity, characterized by the lineage−CD11b+Ly6GloLy6BintCD115−, which we call NeuPs (Neutrophil Precursors). We demonstrated that NeuPs differentiate into mature and functional neutrophils both in vitro and in vivo. By analyzing the gene expression profiles of NeuPs, we also identified NeuP stage-specific genes and characterized patterns of gene regulation throughout granulopoiesis. Importantly, we found that NeuPs have the potential to proliferate, but the proliferation decreased in multiple different hematopoietic stress settings, indicating that proliferating NeuPs are poised at a critical step to regulate granulopoiesis. Our findings will facilitate understanding how the hematopoietic system maintains homeostasis and copes with the demands of granulopoiesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.