Aims
Myocardial fibrosis is associated with clinical ventricular tachyarrhythmia (VTA) events in patients with non-ischaemic dilated cardiomyopathy (DCM). Subepicardial or mid-wall ring-like late gadolinium enhancement (LGE) has received increasing attention in recent years. The aim of this study was to investigate the relationship between ring-like LGE and VTAs in DCM.
Methods and results
Patients diagnosed with non-ischaemic DCM who underwent cardiac magnetic resonance with LGE imaging at baseline were investigated. The composite outcome was the occurrence of VTAs defined as sustained ventricular tachycardia, ventricular fibrillation/flutter, aborted sudden cardiac death (SCD), SCD, and appropriate implantable cardioverter-defibrillator intervention. The final cohort comprised 157 patients, including 36 (22.9%) in no LGE group, 48 (30.6%) in focal LGE group, 40 (25.5%) in multi-focal LGE group, and 33 (21%) in ring-like LGE group. Ring-like LGE group patients were younger compared to focal and multi-focal LGE group (P < 0.001) with higher left ventricular ejection fraction (33.0% vs. 24.4% vs. 22.1%, P < 0.001). After a median of 13 ± 7 months follow-up, compared to patients with no LGE, the hazard ratios (HRs) with 95% confidence intervals (CIs) for VTAs were 2.90 (0.56–15.06), 5.55 (1.21–25.44), and 11.75 (2.66–51.92) for patients with focal LGE, multi-focal LGE, and ring-like LGE, respectively. After multivariable adjustment, ring-like LGE group remained associated with increased risk of VTAs (adjusted HR 10.00, 95% CI 1.54–64.98; P = 0.016) independent of the global LGE burden
Conclusion
The ring-like pattern of LGE is independently associated with an increased risk of VTAs in patients with non-ischaemic DCM.
Background
The basic leucine zipper (bZIP) transcription factor (TF) is one of the largest families of transcription factors (TFs). It is widely distributed and highly conserved in animals, plants, and microorganisms. Previous studies have shown that the bZIP TF family is involved in plant growth, development, and stress responses. The bZIP family has been studied in many plants; however, there is little research on the bZIP gene family in tobacco.
Results
In this study, 77 bZIPs were identified in tobacco and named NtbZIP01 through to NtbZIP77. These 77 genes were then divided into eleven subfamilies according to their homology with Arabidopsis thaliana. NtbZIPs were unevenly distributed across twenty-two tobacco chromosomes, and we found sixteen pairs of segmental duplication. We further studied the collinearity between these genes and related genes of six other species. Quantitative real-time polymerase chain reaction analysis identified that expression patterns of bZIPs differed, including in different organs and under various abiotic stresses. NtbZIP49 might be important in the development of flowers and fruits; NtbZIP18 might be an important regulator in abiotic stress.
Conclusions
In this study, the structures and functions of the bZIP family in tobacco were systematically explored. Many bZIPs may play vital roles in the regulation of organ development, growth, and responses to abiotic stresses. This research has great significance for the functional characterisation of the tobacco bZIP family and our understanding of the bZIP family in higher plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.