Dam failure of tailings ponds can result in serious casualties and environmental pollution. Therefore, timely and accurate monitoring is crucial for managing tailings ponds and preventing damage from tailings pond accidents. Remote sensing technology facilitates the regular extraction and monitoring of tailings pond information. However, traditional remote sensing techniques are inefficient and have low levels of automation, which hinders the large-scale, high-frequency, and high-precision extraction of tailings pond information. Moreover, research into the automatic and intelligent extraction of tailings pond information from high-resolution remote sensing images is relatively rare. However, the deep learning end-to-end model offers a solution to this problem. This study proposes an intelligent and high-precision method for extracting tailings pond information from high-resolution images, which improves deep learning target detection model: faster region-based convolutional neural network (Faster R-CNN). A comparison study is conducted and the model input size with the highest precision is selected. The feature pyramid network (FPN) is adopted to obtain multiscale feature maps with rich context information, the attention mechanism is used to improve the FPN, and the contribution degrees of feature channels are recalibrated. The model test results based on GoogleEarth high-resolution remote sensing images indicate a significant increase in the average precision (AP) and recall of tailings pond detection from that of Faster R-CNN by 5.6% and 10.9%, reaching 85.7% and 62.9%, respectively. Considering the current rapid increase in high-resolution remote sensing images, this method will be important for large-scale, high-precision, and intelligent monitoring of tailings ponds, which will greatly improve the decision-making efficiency in tailings pond management.
The breaching of tailings pond dams may lead to casualties and environmental pollution; therefore, timely and accurate monitoring is an essential aspect of managing such structures and preventing accidents. Remote sensing technology is suitable for the regular extraction and monitoring of tailings pond information. However, traditional remote sensing is inefficient and unsuitable for the frequent extraction of large volumes of highly precise information. Object detection, based on deep learning, provides a solution to this problem. Most remote sensing imagery applications for tailings pond object detection using deep learning are based on computer vision, utilizing the true-color triple-band data of high spatial resolution imagery for information extraction. The advantage of remote sensing image data is their greater number of spectral bands (more than three), providing more abundant spectral information. There is a lack of research on fully harnessing multispectral band information to improve the detection precision of tailings ponds. Accordingly, using a sample dataset of tailings pond satellite images from the Gaofen-1 high-resolution Earth observation satellite, we improved the Faster R-CNN deep learning object detection model by increasing the inputs from three true-color bands to four multispectral bands. Moreover, we used the attention mechanism to recalibrate the input contributions. Subsequently, we used a step-by-step transfer learning method to improve and gradually train our model. The improved model could fully utilize the near-infrared (NIR) band information of the images to improve the precision of tailings pond detection. Compared with that of the three true-color band input models, the tailings pond detection average precision (AP) and recall notably improved in our model, with the AP increasing from 82.3% to 85.9% and recall increasing from 65.4% to 71.9%. This research could serve as a reference for using multispectral band information from remote sensing images in the construction and application of deep learning models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.