Electricity demand forecasting plays a fundamental role in the operation and planning procedures of power systems, and the publications related to electricity demand forecasting have attracted more and more attention in the past few years. To have a better understanding of the knowledge structure in the field of electricity demand forecasting, we applied scientometric methods to analyze the current state and the emerging trends based on the 831 publications from the Web of Science Core Collection during the past 20 years (1999–2018). Employing statistical description analysis, cooperative network analysis, keyword co-occurrence analysis, co-citation analysis, cluster analysis, and emerging trend analysis techniques, this study gives a comprehensive overview of the most critical countries, institutions, journals, authors, and publications in this field, cooperative networks relationships, research hotspots, and emerging trends. The results can provide meaningful guidance and helpful insights for researchers to enhance the understanding of crucial research, emerging trends, and new developments in electricity demand forecasting.
Accurate and timely metro passenger flow forecasting is critical for the successful deployment of intelligent transportation systems. However, it is quite challenging to propose an efficient and robust forecasting approach due to the inherent randomness and variations of metro passenger flows. In this study, we present a novel adaptive decomposition ensemble learning approach to accurately forecast the volume of metro passenger flows that combines the complementary advantages of variational mode decomposition (VMD), seasonal autoregressive integrated moving averaging (SARIMA), a multilayer perceptron (MLP) network and a long short-term memory (LSTM) network. Our proposed decomposition ensemble learning approach consists of three important stages. The first stage applies VMD to decompose the metro passenger flow data into periodic components, deterministic components and volatility components. Then, we employ the SAIMA model to forecast the periodic component, the LSTM network to learn and forecast the deterministic component and the MLP network to forecast the volatility component. In the last stage, these diverse forecasted components are reconstructed by another MLP network. The empirical results show that our proposed decomposition ensemble learning approach not only has the best forecasting performance compared with the relevant benchmark models but also appears to be the most promising and robust based on the historical passenger flow data in the Shenzhen subway system and several standard evaluation measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.