Brucellosis is a serious public health problem in Ulanqab, which is a region located in the middle of the Inner Mongolia Autonomous Region adjacent to Shanxi and Hebei provinces. The disease is prevalent in both the latter provinces and Ulanqab with the highest prevalence of brucellosis occurring in Inner Mongolia. The MLVA-16 scheme is a genotyping tool for assessing genetic diversity and relationships among isolates. Moreover, this genotyping tool can also be applied to epidemiological trace-back investigations. This study reports the occurrence of at least two B. melitensis biovars (1 and 3) in Ulanqab, encompassing 22 and 94 isolates, respectively. B. melitensis biovar 3 was the predominant biovar in the area examined. Panel 1 (MLVA-8) identified three genotypes (42, 63, and 114), with genotype 42 (n = 101) representing 87% of the tested strains. MLVA-11 identified eight genotypes (116, 111, 297, 291, and 342–345) from 116 of the analyzed isolates. All of these isolates were identified as belonging to the East Mediterranean group. Genotype 116 (n = 94) was the predominant genotype and represented 81% of the isolates. The isolates pertaining to this genotype were distributed throughout most of Ulanqab and neighboring regions. The MLVA-16 scheme showed the presence of 69 genotypes, with 46 genotypes being represented by single isolates. This analysis revealed that Ulanqab brucellosis cases had epidemiologically unrelated and sporadic characteristics. The remaining 23 genotypes were shared (between a total of 70 isolates) with each genotype being represented by two to eight isolates. These data indicate that these cases were epidemiologically related. MLVA genotyping confirmed the occurrence of a multipoint outbreak epidemic and intrafamilial brucellosis. Extensive genotype-sharing events were observed among isolates from different regions of Ulanqab and from other provinces of China. These findings suggest either a lack of control of animal movement between different regions or the circulation of contaminated animal products in the market. Our study is the first comprehensive genotyping and genetic analysis of B. melitensis in Ulanqab. We believe that this study will help to improve the effectiveness of brucellosis control programs.
Japanese encephalitis virus (JEV), one of the causes for epidemic encephalitis, belongs to the family of Flaviviridae. In this study, we demonstrated that cellular DEAD-box RNA helicase DDX5 plays an important role in JEV replication. The knockdown of DDX5 was able to decrease JEV replication, and overexpression of DDX5 mutants lacking the helicase activity also reduced JEV replication, suggesting the helicase activity is essential for JEV replication. DDX5 knockdown did not affect virus assembly and release. GST-pulldown and co-immunoprecipitation experiments demonstrated that DDX5 could interact with JEV core protein, non-structural protein 3 (NS3) and 5 (NS5-MTase and NS5-RdRp domains). Meanwhile, we also confirmed that DDX5 interacts with these viral proteins during JEV infection. Confocal microscopy analysis showed that endogenous DDX5 is recruited to the cytoplasm and colocalizes with these viral proteins and viral RNA. RNA-pulldown experiment showed that DDX5 only binds to the JEV 3' untranslated region (UTR). Finally, we confirmed the role of DDX5 in JEV RNA replication using JEV-replicon system. In conclusion, we identified DDX5 as a positive regulator for JEV replication.
In China, brucellosis is an endemic disease and the main sources of brucellosis in animals and humans are infected sheep, cattle and swine. Brucella melitensis (biovars 1 and 3) is the predominant species, associated with sporadic cases and outbreak in humans. Isolates of B. abortus, primarily biovars 1 and 3, and B. suis biovars 1 and 3 are also associated with sporadic human brucellosis. In this study, the genetic profiles of B. melitensis and B. abortus isolates from humans and animals were analyzed and compared by multi-locus variable-number tandem-repeat analysis (MLVA). Among the B. melitensis isolates, the majority (74/82) belonged to MLVA8 genotype 42, clustering in the ‘East Mediterranean’ group. Two B. melitensis biovar 1 genotype 47 isolates, belonging to the ‘Americas’ group, were recovered; both were from the Himalayan blue sheep (Pseudois nayaur, a wild animal). The majority of B. abortus isolates (51/70) were biovar 3, genotype 36. Ten B. suis biovar 1 field isolates, including seven outbreak isolates recovered from a cattle farm in Inner Mongolia, were genetically indistinguishable from the vaccine strain S2, based on MLVA cluster analysis. MLVA analysis provided important information for epidemiological trace-back. To the best of our knowledge, this is the first report to associate Brucella cross-infection with the vaccine strain S2 based on molecular comparison of recovered isolates to the vaccine strain. MLVA typing could be an essential assay to improve brucellosis surveillance and control programs.
In China, brucellosis is an endemic disease typically caused by Brucella melitensis infection (biovars 1 and 3). Brucella canis infection in dogs has not traditionally recognized as a major problem. In recent years however, brucellosis resulting from Brucella canis infection has also been reported, suggesting that infections from this species may be increasing. Data concerning the epidemiology of brucellosis resulting from Brucella canis infection is limited. Therefore, the purpose of this study was to assess the diversity among Chinese Brucella canis strains for epidemiological purposes. First, we employed a 16-marker VNTR assay (Brucella MLVA-16) to assess the diversity and epidemiological relationship of 29 Brucella canis isolates from diverse locations throughout China with 38 isolates from other countries. MLVA-16 analysis separated the 67 Brucella canis isolates into 57 genotypes that grouped into five clusters with genetic similarity coefficients ranging from 67.73 to 100%. Moreover, this analysis revealed a new genotype (2-3-9-11-3-1-5-1:118), which was present in two isolates recovered from Guangxi in 1986 and 1987. Second, multiplex PCR and sequencing analysis were used to determine whether the 29 Chinese Brucella canis isolates had the characteristic BMEI1435 gene deletion. Only two isolates had this deletion. Third, amplification of the omp25 gene revealed that 26 isolates from China had a T545C mutation. Collectively, this study reveals that considerable diversity exists among Brucella canis isolates in China and provides resources for studying the genetic variation and microevolution of Brucella.
BackgroundBrucellosis is an endemic disease in the Inner Mongolia Autonomous Region of China and Ulanqab exhibits the highest prevalence of brucellosis in this region. Due to the complex nature of Brucellosis, a cure for this disease has proven to be elusive. Furthermore, the reduced susceptibility of Brucella spp. to antimicrobial agents has been reported as a potential cause of therapeutic failure. However, detailed in vitro antimicrobial susceptibility patterns pertaining to Brucella isolates from this region have not yet been published. The aim of this study was to evaluate the antibiotic susceptibility profile of Brucella melitensis clinical isolates from Ulanqab, Inner Mongolia, China.MethodsA total of 85 B. melitesis isolates were obtained from humans in Ulanqab of Inner Mongolia, China; the antimicrobial susceptibility of 85 clinical isolates to nine antibiotics was assessed using the E-test method according to the CLSI (Clinical and Laboratory Standards Institute) guidelines.ResultsAll of the tested isolates were susceptible to minocycline, sparfloxacin, doxycycline, tetracycline, ciprofloxacin, gentamicin and levofloxacin. Resistance to rifampin and cotrimoxazole was observed in 1.0% (1/85) and 7.0% (6/85) of the isolates, respectively. However, rpoB gene mutations were not observed in single isolates exhibiting resistance to rifampin.ConclusionsWe observed that B. melitensis isolates are susceptible to the majority of the tested antibiotics. Furthermore, minocycline and sparfloxacin exhibited extremely high bactericidal effects in relation to the B. melitensis isolates. The sensitivity of commonly used drugs for the treatment of brucellosis should be regularly monitored. To the best of our knowledge, this is the first report of rifampin and cotrimoxazole resistant isolates of B. melitensis in China. In summary, based on the findings from this study, we suggest that antibiotic administration and use should be rationalized to prevent future drug resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.