According to the forecast of stock price trends, investors trade stocks. In recent years, many researchers focus on adopting machine learning (ML) algorithms to predict stock price trends. However, their studies were carried out on small stock datasets with limited features, short backtesting period, and no consideration of transaction cost. And their experimental results lack statistical significance test. In this paper, on large-scale stock datasets, we synthetically evaluate various ML algorithms and observe the daily trading performance of stocks under transaction cost and no transaction cost. Particularly, we use two large datasets of 424 S&P 500 index component stocks (SPICS) and 185 CSI 300 index component stocks (CSICS) from 2010 to 2017 and compare six traditional ML algorithms and six advanced deep neural network (DNN) models on these two datasets, respectively. The experimental results demonstrate that traditional ML algorithms have a better performance in most of the directional evaluation indicators. Unexpectedly, the performance of some traditional ML algorithms is not much worse than that of the best DNN models without considering the transaction cost. Moreover, the trading performance of all ML algorithms is sensitive to the changes of transaction cost. Compared with the traditional ML algorithms, DNN models have better performance considering transaction cost. Meanwhile, the impact of transparent transaction cost and implicit transaction cost on trading performance are different. Our conclusions are significant to choose the best algorithm for stock trading in different markets.
In general, the stock prices of the same industry have a similar trend, but those of different industries do not. When investing in stocks of different industries, one should select the optimal model from lots of trading models for each industry because any model may not be suitable for capturing the stock trends of all industries. However, the study has not been carried out at present. In this paper, firstly we select 424 S&P 500 index component stocks (SPICS) and 185 CSI 300 index component stocks (CSICS) as the research objects from 2010 to 2017, divide them into 9 industries such as finance and energy respectively. Secondly, we apply 12 widely used machine learning algorithms to generate stock trading signals in different industries and execute the back-testing based on the trading signals. Thirdly, we use a non-parametric statistical test to evaluate whether there are significant differences among the trading performance evaluation indicators (PEI) of different models in the same industry. Finally, we propose a series of rules to select the optimal models for stock investment of every industry. The analytical results on SPICS and CSICS show that we can find the optimal trading models for each industry based on the statistical tests and the rules. Most importantly, the PEI of the best algorithms can be significantly better than that of the benchmark index and “Buy and Hold” strategy. Therefore, the algorithms can be used for making profits from industry stock trading.
Binocular stereo matching is a hot topic in 3D reconstruction, target detection and target tracking. Through experiments, this paper analyzes and compares several classic binocular stereo matching algorithms, and finally selects SGBM with good comprehensive performance. Moreover, based on this, it gets accurate window size parameters through experiments, which provides a basis for the following 3D modeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.