Lactic acid bacteria (LAB) constitute a heterogeneous group of microorganisms that produce lactic acid as the major product during the fermentation process. LAB are Gram-positive bacteria with great biotechnological potential in the food industry. They can produce bacteriocins, which are proteinaceous antimicrobial molecules with a diverse genetic origin, posttranslationally modified or not, that can help the producer organism to outcompete other bacterial species. In this review, we focus on the various types of bacteriocins that can be found in LAB and the organization and regulation of the gene clusters responsible for their production and biosynthesis, and consider the food applications of the prototype bacteriocins from LAB. Furthermore, we propose a revised classification of bacteriocins that can accommodate the increasing number of classes reported over the last years.Electronic supplementary materialThe online version of this article (doi:10.1007/s00253-016-7343-9) contains supplementary material, which is available to authorized users.
Lanthipeptides are peptides that contain several post-translationally modified amino acid residues and commonly show considerable antimicrobial activity. After translation, the amino acid residues of these peptides are modified by a distinct set of modification enzymes. This process results in peptides containing one or more lanthionine rings and dehydrated Ser and Thr residues. Previously, an in vivo lanthipeptide production system based on the modification machinery of the model lantibiotic nisin was reported. Here, we present the addition of the modification enzymes LtnJ and GdmD to this production system. With these enzymes we can now produce lanthipeptides that contain d-alanines or a C-terminal aminovinyl-cysteine. We show experimentally that the decarboxylase GdmD is responsible for the C-terminal decarboxylation. Our results demonstrate that different lanthipeptide modification enzymes can work together in an in vivo production system. This yields a plug-and-play system that can be used to select different sets of modification enzymes to work on diverse, specifically designed substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.