Metabolic reprogramming refers to the transformation of the whole metabolic network covering glycolysis and mitochondrial metabolism, which is primarily manifested as the Warburg effect and mitochondrial metabolic reprogramming. Propofol (Pro) has been testified to suppress the malignancy of diversified human cancers. Nevertheless, its role in glycolysis is still uncertain. The purpose of this study was to determine whether Pro modulated glycolysis in ovarian cancer (OC) cells. Cell proliferation, apoptosis, migration, and invasion were tested via CCK-8, flow cytometry, and Transwell assays, respectively, and glucose intake, lactic acid, and ATP production were also determined. Pro restrained glycolysis via mediating the circular RNA-zinc finger RNA-binding protein (ZFR)/microRNA (miR)-212-5p/superoxide dismutase 2 (SOD2) axis. Additionally, Pro restrained cancer cell advancement via modulating circ-ZFR/miR-212-5p/SOD2 axis. In short, Pro restrained glycolysis via mediating the circ-ZFR/miR-212-5p/SOD2 axis. These results offered a better theoretical foundation for comprehending the molecular pathology of OC and provided a novel target for OC diagnosis and treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.