Integration of large-scale cluster electric vehicles (EVs) and their spatial-temporal transfer randomness are likely to affect the safety and economic operation of the distribution network. This paper investigates the spatial-temporal distribution prediction of EVs' charging load and then evaluates the reliability of the distribution network penetrated with large-scale cluster EVs. To effectively predict the charging load, trip chain technology, Monte Carlo method, and Markov decision process (MDP) theory are employed. Moreover, a spatial-temporal transfer model of EVs is established, and based on which, an EV energy consumption model and a charging load prediction model are constructed with consideration of temperature, traffic condition and EV owner's subjective willingness in different scenarios. With the application of sequential Monte Carlo method, the paper further evaluates distribution network reliability in various charging scenarios. In the evaluation, indices including per unit value (PUV), fast voltage stability index (FVSI), loss of load probability (LOLP), system average interruption frequency index (SAIFI), system average interruption duration index (SAIDI), and expected energy not supplied (EENS) are incorporated. To validate the proposed prediction model and evaluation method, a series of numerical simulations are conducted on the basis of taking the traffic-distribution system of a typical city as an example. The result demonstrates that the proposed spatial-temporal transfer model is more practical in charging load prediction than the popularly used Dijkstra's shortest path algorithm. Moreover, high temperature, congestion and the increment of EV penetration rate will further weaken distribution network reliability. INDEX TERMS Electric vehicle, reliability evaluation, trip chain technology, Markov decision process, sequential Monte Carlo method, spatial-temporal transfer randomness NOMENCLATURE ABBREVIATIONS EV Electric vehicle MDP Markov decision process SOC State of charge TNN Traffic network node DNN Distribution network node DCP Dispersion of charging power PARAMETERS μ Mean of the beginning time of each trip Variance of the beginning time of each trip v i,j max Maximum speed allowed at the road (i, j) x EV's position in the travel path D x Distance between the origin of the trip and x C EV Capacity of EV battery
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.