The dilemma of employing high-capacity battery materials and maintaining the electronic and mechanical integrity of electrodes demands novel designs of binder systems. Here, we developed a binder polymer with multi-functionality to maintain high electronic conductivity, mechanical adhesion, ductility, and electrolyte uptake. These critical properties are achieved by designing polymers with proper functional groups. Through synthesis, spectroscopy and simulation, electronic conductivity is optimized by tailoring the key electronic state, which is not disturbed by further modifications of side chains. This fundamental allows separated optimization of the mechanical and swelling properties without detrimental effect on electronic property. Remaining electrically conductive, the enhanced polarity of the polymer greatly improves the adhesion, ductility, and more importantly, the electrolyte uptake to the levels of those available only in non-conductive binders before. We also demonstrate directly the performance of the developed conductive binder by achieving full-capacity cycling of silicon particles without using any conductive additive.3
Interfacial ligand passivation engineering has recently been recognized as a promising avenue, contributing simultaneously to the optoelectronic characteristics and moisture/operation tolerance of perovskite solar cells. To further achieve a win-win situation of both performance and stability, an innovative conjugated aniline modifier (3-phenyl-2-propen-1-amine; PPEA) is explored to moderately tailor organolead halide perovskites films. Here, the conjugated PPEA presents both "quasi-coplanar" rigid geometrical configuration and distinct electron delocalization characteristics. After a moderate treatment, a stronger dipole capping layer can be formed at the perovskite/ transporting interface to achieve favorable banding alignment, thus enlarging the built-in potential and promoting charge extraction. Meanwhile, a conjugated cation coordinated to the surface of the perovskite grains/units can form preferably ordered overlapping, not only passivating the surface defects but also providing a fast path for charge exchange. Benefiting from this, a ≈21% efficiency of the PPEA-modified solar cell can be obtained, accompanied by long-term stability (maintaining 90.2% of initial power conversion efficiency after 1000 h testing, 25 °C, and 40 ± 10 humidity). This innovative conjugated molecule "bridge" can also perform on a larger scale, with a performance of 18.43% at an area of 1.96 cm 2 .
Metallic Zn as a promising anode material of aqueous batteries suffers from severe parasitic reactions and notorious dendrite growth. To address these issues, the desolvation and nucleation processes need to be carefully regulated. Herein, Zn foils coated by ZnF2–Ag nanoparticles (ZnF2–Ag@Zn) are used as a model to modulate the desolvation and nucleation processes by hybrid surfaces, where Ag has a strong affinity to Zn adatoms and ZnF2 shows an intense adsorption to H2O. This selective adsorption of different species on ZnF2 and Ag reduces the mutual interference between two species. Therefore, ZnF2–Ag@Zn exhibits the electrochemical performance much better than ZnF2@Zn or Ag@Zn. Even at −40 °C, the full cells using ZnF2–Ag@Zn demonstrate an ultralong lifespan of 5000 cycles with a capacity retention of almost 100%. This work provides new insights to improve the performance of Zn metal batteries, especially at low temperatures.
Herein, a simple one‐pot way is designed to prepare a type of multifunctional metal–organic framework (MOF)‐based hybrid nanogels by in situ hybridization of dopamine monomer in the skeleton of MnCo. The resultant hybrid nanoparticles (named as MCP) show enhanced photothermal conversion efficiency in comparison with pure polydopamine or MnCo nanoparticles (NPs) synthesized under a similar method and, therefore, show great potential for photothermal therapy (PTT) in vivo. The MCP NPs are expected to possess T 1 positive magnetic resonance imaging ability due to the high‐spin Mn‐N6 (S = 5/2) in the skeleton of MnCo. To improve the therapy efficiency as a PTT agent, the MCP NPs are further modified with functional polyethylene glycol (PEG) and thiol terminal cyclic arginine–glycine–aspartic acid peptide, respectively: the first one is to increase the stability, biocompatibility, and blood circulation time of MCP NPs in vivo; the second one is to increase the tumor accumulation of MCP‐PEG NPs and improve their therapeutic efficiency as photothermal agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.