To rapidly detect the wheat moisture content (WMC) without harm to the wheat and before harvest, this paper measured wheat and panicle moisture content (PMC) and the corresponding spectral reflectance of panicle before harvest at the Beijing Tongzhou experimental station of China Agricultural University. Firstly, we used correlation analysis to determine the optimal regression model of WMC and PMC. Secondly, we derived the spectral sensitive band of PMC before filtering the redundant variables competitive adaptive reweighted sampling (CARS) to select the variable subset with the least error. Finally, partial least squares regression (PLSR) was used to build and analyze the prediction model of PMC. At the early stage of wheat harvest, a high correlation existed between WMC and PMC. Among all regression models such as exponential, univariate linear, polynomial models, and the power function regression model, the logarithm regression model was the best. The determination coefficients of the modeling sample were: R2 = 0.9284, the significance F = 362.957, the determination coefficient of calibration sample R2v = 0.987, the root mean square error RMSEv = 3.859, and the relative error REv = 7.532. Within the range of 350–2500 nm, bands of 728–907 nm, 1407–1809 nm, and 1940–2459 nm had a correlation coefficient of PMC and wavelength reflectivity higher than 0.6. This paper used the CARS algorithm to optimize the variables and obtained the best variable subset, which included 30 wavelength variables. The PLSR model was established based on 30 variables optimized by the CARS algorithm. Compared with the all-sensitive band, which had 1103 variables, the PLSR model not only reduced the number of variables by 1073, but also had a higher accuracy in terms of prediction. The results showed that: RMSEC = 0.9301, R2c = 0.995, RMSEP = 2.676, R2p = 0.945, and RPD = 3.362, indicating that the CARS algorithm could effectively remove the variables of spectral redundant information. The CARS algorithm provided a new way of thinking for the non-destructive and rapid detection of WMC before harvest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.