As an indoleamine molecule, melatonin mediates many physiological processes in plants. We investigated its role in regulating growth, ion homeostasis, and the response to oxidative stress in Malus hupehensis Rehd. under high-salinity conditions. Stressed plants had reduced growth and a marked decline in their net photosynthetic rates and chlorophyll contents. However, pretreatment with 0.1μm melatonin significantly alleviated this growth inhibition and enabled plants to maintain an improved photosynthetic capacity. The addition of melatonin also lessened the amount of oxidative damage brought on by salinity, perhaps by directly scavenging H(2) O(2) or enhancing the activities of antioxidative enzymes such as ascorbate peroxidase, catalase, and peroxidase. We also investigated whether melatonin might control the expression of ion-channel genes under salinity. Here, MdNHX1 and MdAKT1 were greatly up-regulated in the leaves, which possibly contributed to the maintenance of ion homeostasis and, thus, improved salinity resistance in plants exposed to exogenous melatonin.
Melatonin pre-treatment significantly increases the tolerance of both drought-tolerant Malus prunifolia and drought-sensitive M. hupehensis plants. Its beneficial effects include better water conservation in leaves, less electrolyte leakage, steady chlorophyll contents, and greater photosynthetic performance under stress conditions. Melatonin selectively down-regulates MdNCED3, an abscisic acid (ABA) synthesis gene, and up-regulates its catabolic genes, MdCYP707A1 and MdCYP707A2, thereby reducing ABA contents in drought-stressed plants. Melatonin also directly scavenges H2O2 and enhances the activities of antioxidant enzymes to detoxify H2O2 indirectly. These two mechanisms work synergistically to improve the functions of stomata, i.e. causing them to re-open. Plants can effectively regulate their water balance under drought conditions by up-regulating the expression of melatonin synthesis genes MdTDC1, MdAANAT2, MdT5H4, and MdASMT1. Therefore, inducing melatonin production is an important mechanism by which plants can counteract the influence of this abiotic stressor.
Dopamine mediates many physiological processes in plants. We investigated its role in regulating growth, ion homeostasis and the response to salinity in Malus hupehensis Rehd. Both hydroponics and field-pot experiments were conducted under saline conditions. Salt-stressed plants had reduced growth and a marked decline in their net photosynthetic rates, values for Fv /Fm and chlorophyll contents. However, pretreatment with 100 or 200 μM dopamine significantly alleviated this inhibition and enabled plants to maintain their photosynthetic capacity. In addition to changing stomatal behavior, supplementation with dopamine positively influenced the uptake of K, N, P, S, Cu and Mn ions but had an inhibitory effect on Na and Cl uptake, the balance of which is responsible for managing the response to salinity by Malus plants. Dopamine pretreatment also controlled the burst of hydrogen peroxide, possibly through direct scavenging and by enhancing the activities of antioxidative enzymes and the capacity of the ascorbate-glutathione cycle. We also investigated whether dopamine might regulate salt overly sensitive pathway genes under salinity. Here, MdHKT1, MdNHX1 and MdSOS1 were greatly upregulated in roots and leaves, which possibly contributed to the maintenance of ion homeostasis and, thus, improved salinity resistance in plants exposed earlier to exogenous dopamine. These results support our conclusion that dopamine alleviates salt-induced stress not only at the level of antioxidant defense but also by regulating other mechanisms of ion homeostasis.
Plant height is an important trait for fruit trees. The dwarf characteristic is commonly associated with highly efficient fruit production, a major objective when breeding for apple (Malus domestica). We studied the function of MdNAC1, a novel NAC transcription factor (TF) gene in apple related to plant dwarfing. Localized primarily to the nucleus, MdNAC1 has transcriptional activity in yeast cells. Overexpression of the gene results in a dwarf phenotype in transgenic apple plants. Their reduction in size is manifested by shorter, thinner stems and roots, and a smaller leaf area. The transgenics also have shorter internodes and fewer cells in the stems. Levels of endogenous abscisic acid (ABA) and brassinosteroid (BR) are lower in the transgenic plants, and expression is decreased for genes involved in the biosynthesis of those phytohormones. All of these findings demonstrate that MdNAC1 has a role in plants dwarfism, probably by regulating ABA and BR production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.