Hydraulic steel gates are the core adjustment mechanism for water conservancy projects, the safety of which is related to the safety of the entire water conservancy project. In this study, the issue of flow-induced vibration under the influence of pulsing water pressure when the deep-hole plane steel gate construction is partially opened is investigated using a numerical calculation approach of CFD–CSD coupling. The time-history pulsating pressure loads of each part are first determined by tracking the upstream, bottom, and downstream pulsating water pressure loads under partially open operation conditions of the gate. The impact of the water in front of the gate on the natural vibration mode and frequency of the gate is then investigated based on the analysis of the dry/wet modes of the gate structure. Additionally, the hydrodynamic load is applied to the finite element model of the gate structure while taking into account the fluid–structure coupling effect, and the results of the gate flow-induced vibration response are obtained. Three typical local opening relative openings are chosen, with the operating state of the design water head (Hs = 70 m) of a deep-hole plane steel gate as an example. According to the analysis’s findings, the gate’s natural vibration frequency is greatly lowered under the influence of the water in front of it, and its amplitude increases by 50%. The pressure value pressing on the gate changes dynamically as it is partially opened and discharged. The maximum dynamic displacement value and the maximum dynamic stress value of the gate both appear in the middle and lower part of the gate under the condition of partial opening, and both occur when the relative opening is e/H = 0.125. The maximum displacement value is 3.43 mm, and the maximum stress value is 161 MPa. The maximum dynamic displacement and dynamic stress of each gate component steadily decrease with an increase in the relative openness. The gate dynamic response analysis approach described in this research can serve as a guide for hydraulic engineering design.
Flutter suppression is an important measure to improve fatigue life and enhance the performance of aircraft in modern aircraft design. In order to design more effective controllers for flutter suppression with high efficiency, an efficient reduced-order framework for active/passive hybrid flutter suppression is proposed. The traditional CFD-based ROMs have been successfully applied to active flutter suppression with high accuracy and efficiency. But, when a structure modification is made such as in aeroelastic tailoring and aeroelastic structural optimisation, the structural model should be updated, and the expensive, time-consuming CFD-based ROMs have to be reconstructed; such a process is impractical for passive flutter suppression. To overcome the realistic challenge, an efficient reduced-order framework for active/passive hybrid flutter suppression is proposed by extending an efficient aeroelastic CFD-based POD/ROM which we have developed. The proposed framework is demonstrated and evaluated using an improved AGARD 445.6 wing model. The results show that the proposed framework can accurately predict the aeroelastic response for active/passive hybrid flutter suppression with high efficiency. It provides a powerful tool for active/passive hybrid flutter suppression, and therefore, is ideally suited to design more effective controllers, and may have the potential to reduce the overall cost of aircraft design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.