SummaryThis article extends previous probability models for periodic breast cancer screening examinations. The specific aim is to provide statistical inference for age dependence of sensitivity and the transition probability from the disease free to the preclinical state. The setting is a periodic screening program in which a cohort of initially asymptomatic women undergo a sequence of breast cancer screening exams. We use age as a covariate in the estimation of screening sensitivity and the transition probability simultaneously, both from a frequentist point of view and within a Bayesian framework. We apply our method to the Health Insurance Plan of Greater New York study of female breast cancer and give age-dependent sensitivity and transition probability density estimates. The inferential methodology we develop is also applicable when analyzing studies of modalities for early detection of other types of progressive chronic diseases.
Normalization is an essential step with considerable impact on high-throughput RNA sequencing (RNA-seq) data analysis. Although there are numerous methods for read count normalization, it remains a challenge to choose an optimal method due to multiple factors contributing to read count variability that affects the overall sensitivity and specificity. In order to properly determine the most appropriate normalization methods, it is critical to compare the performance and shortcomings of a representative set of normalization routines based on different dataset characteristics. Therefore, we set out to evaluate the performance of the commonly used methods (DESeq, TMM-edgeR, FPKM-CuffDiff, TC, Med UQ and FQ) and two new methods we propose: Med-pgQ2 and UQ-pgQ2 (per-gene normalization after per-sample median or upper-quartile global scaling). Our per-gene normalization approach allows for comparisons between conditions based on similar count levels. Using the benchmark Microarray Quality Control Project (MAQC) and simulated datasets, we performed differential gene expression analysis to evaluate these methods. When evaluating MAQC2 with two replicates, we observed that Med-pgQ2 and UQ-pgQ2 achieved a slightly higher area under the Receiver Operating Characteristic Curve (AUC), a specificity rate > 85%, the detection power > 92% and an actual false discovery rate (FDR) under 0.06 given the nominal FDR (≤0.05). Although the top commonly used methods (DESeq and TMM-edgeR) yield a higher power (>93%) for MAQC2 data, they trade off with a reduced specificity (<70%) and a slightly higher actual FDR than our proposed methods. In addition, the results from an analysis based on the qualitative characteristics of sample distribution for MAQC2 and human breast cancer datasets show that only our gene-wise normalization methods corrected data skewed towards lower read counts. However, when we evaluated MAQC3 with less variation in five replicates, all methods performed similarly. Thus, our proposed Med-pgQ2 and UQ-pgQ2 methods perform slightly better for differential gene analysis of RNA-seq data skewed towards lowly expressed read counts with high variation by improving specificity while maintaining a good detection power with a control of the nominal FDR level.
Objectives We investigate screening sensitivity, transition probability and sojourn time in lung cancer screening for male heavy smokers using the Mayo Lung Project data. We also estimate the lead time distribution, its property, and the projected effect of taking regular chest X-rays for lung cancer detection. Methods We apply the statistical method developed by Wu et al. [1] using the Mayo Lung Project (MLP) data, to make Bayesian inference for the screening test sensitivity, the age-dependent transition probability from disease-free to preclinical state, and the sojourn time distribution, for male heavy smokers in a periodic screening program. We then apply the statistical method developed by Wu et al. [2] using the Bayesian posterior samples from the MLP data to make inference for the lead time, the time of diagnosis advanced by screening for male heavy smokers. The lead time is distributed as a mixture of a point mass at zero and a piecewise continuous distribution, which corresponds to the probability of no-early-detection, and the probability distribution of the early diagnosis time. We present estimates of these two measures for male heavy smokers by simulations. Results The posterior sensitivity is almost symmetric, with posterior mean 0.89, and posterior median 0.91; the 95% highest posterior density (HPD) interval is (0.72, 0.98). The posterior mean sojourn time is 2.24 years, with a posterior median of 2.20 years for male heavy smokers. The 95% HPD interval for the mean sojourn time is (1.57, 3.35) years. The age-dependent transition probability is not a monotone function of age; it has a single maximum at age 68. The mean lead time increases as the screening time interval decreases. The standard error of the lead time also increases as the screening time interval decreases. Conclusion Although the mean sojourn time for male heavy smokers is longer than expected, the predictive estimation of the lead time is much shorter. This may provide policy makers important information on the effectiveness of the chest X-rays and sputum cytology in lung cancer early detection. Published by Elsevier Ireland Ltd.
This article develops a probability distribution for the lead time in periodic cancer screening examinations. The general aim is to allow statistical inference for a screening program's lead time, the length of time the diagnosis is advanced by screening. The program's lead time is distributed as a mixture of a point mass and a piecewise continuous distribution. Simulation studies using the HIP (Health Insurance Plan for Greater New York) study's data provide estimates of different characteristics of a screening program under different screening frequencies. The components of this mixture represent two aspects of screening's benefit, namely, a reduction in the number of interval cases and the extent by which screening advanced the age of diagnosis. We present estimates of these two measures for participants in a breast cancer screening program. We also provide the mean, mode, variance, and density curve of the program's lead time. The model can provide policy makers with important information regarding the screening period, frequency, and the endpoints that may serve as surrogates for the benefit to women who take part in a periodic screening program. Though the study focuses on breast cancer screening, it is also applicable to other kinds of chronic disease.
The intervention had beneficial effects in improving healthy behaviors among children. Further studies are needed to assess its long-term effects and cost-effectiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.