The performance of deep neural networks improves with more annotated data. The problem is that the budget for annotation is limited. One solution to this is active learning, where a model asks human to annotate data that it perceived as uncertain. A variety of recent methods have been proposed to apply active learning to deep networks but most of them are either designed specific for their target tasks or computationally inefficient for large networks. In this paper, we propose a novel active learning method that is simple but task-agnostic, and works efficiently with the deep networks. We attach a small parametric module, named "loss prediction module," to a target network, and learn it to predict target losses of unlabeled inputs. Then, this module can suggest data that the target model is likely to produce a wrong prediction. This method is task-agnostic as networks are learned from a single loss regardless of target tasks. We rigorously validate our method through image classification, object detection, and human pose estimation, with the recent network architectures. The results demonstrate that our method consistently outperforms the previous methods over the tasks.
Commercial Light-Field cameras provide spatial and angular information, but its limited resolution becomes an important problem in practical use. In this paper, we present a novel method for Light-Field image super-resolution (SR) via a deep convolutional neural network. Rather than the conventional optimization framework, we adopt a datadriven learning method to simultaneously up-sample the angular resolution as well as the spatial resolution of a Light-Field image. We first augment the spatial resolution of each sub-aperture image to enhance details by a spatial SR network. Then, novel views between the sub-aperture images are generated by an angular super-resolution network. These networks are trained independently but finally finetuned via end-to-end training. The proposed method shows the state-of-the-art performance on HCI synthetic dataset, and is further evaluated by challenging real-world applications including refocusing and depth map estimation.
We present an image-conditional image generation model. The model transfers an input domain to a target domain in semantic level, and generates the target image in pixel level. To generate realistic target images, we employ the real/fake-discriminator as in Generative Adversarial Nets [6], but also introduce a novel domain-discriminator to make the generated image relevant to the input image. We verify our model through a challenging task of generating a piece of clothing from an input image of a dressed person. We present a high quality clothing dataset containing the two domains, and succeed in demonstrating decent results.
Learning-based color enhancement approaches typically learn to map from input images to retouched images. Most of existing methods require expensive pairs of input-retouched images or produce results in a noninterpretable way. In this paper, we present a deep reinforcement learning (DRL) based method for color enhancement to explicitly model the step-wise nature of human retouching process. We cast a color enhancement process as a Markov Decision Process where actions are defined as global color adjustment operations. Then we train our agent to learn the optimal global enhancement sequence of the actions. In addition, we present a 'distort-and-recover' training scheme which only requires high-quality reference images for training instead of input and retouched image pairs. Given high-quality reference images, we distort the images' color distribution and form distorted-reference image pairs for training. Through extensive experiments, we show that our method produces decent enhancement results and our DRL approach is more suitable for the 'distortand-recover' training scheme than previous supervised approaches. Supplementary material and code are available at https
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.