:
The Wenchuan earthquake in 2008 and geo‐hazards triggered by the earthquake caused large injuries and deaths as well as destructive damage for infrastructures like construction, traffic and electricity. It is urgent to select relatively secure areas for townships and cities constructed in high mountainous regions with high magnitude earthquakes. This paper presents the basic thoughts, evaluation indices and evaluation methods of geological security evaluation, water and land resources security demonstration and integrated assessments of geo‐environmental suitability for reconstruction in alp and ravine with high magnitude earthquakes, which are applied in the worst‐hit areas (12 counties). The integrated assessment shows that: (1) located in the Longmenshan fault zone, the evaluated area is of poor regional crust stability, in which the unstable and second unstable areas account for 79% of the total; (2) the geo‐hazards susceptibility is high in the evaluation area. The spots of geo‐hazards triggered by earthquake are mainly distributed along the active fault zone with higher distribution in the moderate and high mountains area, in which the areas of high and moderate susceptibility zoning accounts for 40.1% of the total; (3) geological security is poor in the evaluated area, in which the area of the unsuitable construction occupies 73.1%, whereas in the suitable construction area, the areas of geological security, second security and insecurity zoning account for 8.3%, 9.3% and 9.3% of the evaluated area respectively; (4) geo‐environmental suitability is poor in the evaluated area, in which the areas of suitability and basic suitability zoning account for 3.5% and 7.3% of the whole evaluation area.
Hydraulic fracture (HF) propagation behavior is significant when building enhanced geothermal systems (EGS). HF geometry is closely related to the structural planes (SPs) in hot dry rock (HDR), such as natural fractures (NFs), quartz veins (QVs) and lithologic interfaces (LIs). However, the HF behaviors in HDR have not been well understood, especially the influence of multiple SPs on the HF geometry. To clarify this mechanism, several groups of physical simulation experiments of hydraulic fracturing were conducted to investigate the intersection relationship between the HFs and the SPs. Results show that the HF geometry shows great differences when intersecting with different SPs. In summary, the HF geometry displays four basic patterns, namely, propagation along the SPs, branching, capture, penetration/non-dilation. The fluctuation degree of the pressure-time curve and the HF complexity show a positive correlation. The cementing strength of the SP and their different mechanical properties from rock matrix influence the HF behaviors significantly. Therefore, the HF shows diverse geometries when intersecting with the NFs and LIs, while propagating along the QV when intersecting with it. For the complex networks, it is favorable for the HF to penetrate through and dilate several SPs, rather than simply cross or propagate along the SP.
Hot dry rock (HDR) geothermal resources are renewable energy source. Many of the findings of HDR resource evaluations have been used in energy planning and EGS design. However, to assess the amount of HDR resources in different locations, a consistent classification scheme and evaluation methods are still lacking. Considering geological credibility and economic feasibility, HDR resources are separated into three categories: vision, reserve, and exploitable. Vision and reserve are stationary resources that can be evaluated using the volume technique, and the exploitable resources can be evaluated using the numerical simulation approach. The HDR vision resource of the Gonghe Basin is evaluated to be 4.076 × 1022 J, and the reserve resource of the Qiabuqia HDR mass is evaluated to be 2.11 × 1020 J. At the Qiabuqia HDR development site, a discrete fracture network (DFN) model is applied for numerical simulation computations, which is based on the notion of local thermal nonequilibrium. The K1 and K2 wells produce varying amounts of heat due to the heterogeneous features of the fractured medium model, which is primarily due to differences in fracture density, heat exchange area, and fluid migration pattern. The categorization system and assessment technique can be used as a guide for evaluating HDR resources in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.