Entering a new era of big data, analysis of large amounts of real-time data is important, and air quality data as streaming time series are measured by several different sensors. To this end, numerous methods for time-series forecasting and deep-learning approaches based on neural networks have been used. However, they usually rely on a certain model with a stationary condition, and there are few studies of real-time prediction of dynamic massive multivariate data. Use of a variety of independent variables included in the data is important to improve forecasting performance. In this paper, we proposed a real-time prediction approach based on an ensemble method for multivariate time-series data. The suggested method can select multivariate time-series variables and incorporate real-time updatable autoregressive models in terms of performance. We verified the proposed model using simulated data and applied it to predict air quality measured by five sensors and failures based on real-time performance log data in server systems. We found that the proposed method for air pollution prediction showed effective and stable performance for both short- and long-term prediction tasks. In addition, traditional methods for abnormality detection have focused on present status of objects as either normal or abnormal based on provided data, we protectively predict expected statuses of objects with provided real-time data and implement effective system management in cloud environments through the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.