Bio-inspired robotic platforms are based on knowledge from nature. Most robots focus on a single type of locomotion, such as walking or flying. However, multi-locomotive robots have recently attracted considerable attention from researchers. In this study, an amphibious robotic platform was developed for operating on water and ground surfaces with a single design. The robot uses spherical footpads to remain on the water surface based on buoyancy and drag forces. Ground walking is also achieved by repeated tripod motion of the spherical footpads. The Klann mechanism was adopted and optimized to achieve the footpad motion for stable locomotion on both surfaces. The velocity and pitching angle were analyzed by simulation and experiments at various operating frequencies to validate the performance of the platform. This robot could be applied in nuclear power plant accidents after hydrodynamic force-based steering by the tail is achieved.Index Terms-Amphibious locomotion, bio-inspiration, optimal design, Klann mechanism, tripod gait, water-running robot.1083-4435 (c)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.