This study investigates a seasonally varying response of phytoplankton biomass to environmental factors in rivers. Artificial neural network (ANN) models incorporated with a clustering technique, the clustered ANN models, were employed to analyze the relationship between chlorophyll a (
Chl-a
) and the explanatory variables in the regulated Nakdong River, South Korea. The results show that weir discharge (
Q
) and total phosphorus (
TP
) were the most influential factors on temporal dynamics of
Chl-a
. The relative importance of both variables increased up to higher than 30% for low water temperature seasons with dominance of diatoms. While, during summer when cyanobacteria predominated, the significance of
Q
increased up to 45%, while that of
TP
declined to about 10%. These tendencies highlight that the effects of the river environmental factors on phytoplankton abundance was temporally inhomogeneous. In harmful algal bloom mitigation scenarios, the clustered ANN models reveals that the optimal weir discharge was 400 m
3
/s which was 67% of the value derived from the non-clustered ANN models. At the immediate downstream of confluence of the Kumho River, the optimal weir discharge should increase up to about 1.5 times because of the increase in the tributary pollutant loads attributed to electrical conductivity (
EC
).
A Transient Storage Model (TSM), which considers the storage exchange process that induces an abnormal mixing phenomenon, has been widely used to analyze solute transport in natural rivers. The primary step in applying TSM is a calibration of four key parameters: flow zone dispersion coefficient (Kf), main flow zone area (Af), storage zone area (As), and storage exchange rate (α); by fitting the measured Breakthrough Curves (BTCs). In this study, to overcome the costly tracer tests necessary for parameter calibration, two dimensionless empirical models were derived to estimate TSM parameters, using multi-gene genetic programming (MGGP) and principal components regression (PCR). A total of 128 datasets with complete variables from 14 published papers were chosen from an extensive meta-analysis and were applied to derivations. The performance comparison revealed that the MGGP-based equations yielded superior prediction results. According to TSM analysis of field experiment data from Cheongmi Creek, South Korea, although all assessed empirical equations produced acceptable BTCs, the MGGP model was superior to the other models in parameter values. The predicted BTCs obtained by the empirical models in some highly complicated reaches were biased due to misprediction of Af. Sensitivity analyses of MGGP models showed that the sinuosity is the most influential factor in Kf, while Af, As, and α, are more sensitive to U/U*. This study proves that the MGGP-based model can be used for economic TSM analysis, thus providing an alternative option to direct calibration and the inverse modeling initial parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.