Among various sensors used to recognize obstacles in marine environments, vision sensors are the most basic. Vision sensors are significantly affected by the surrounding environment and cannot recognize distant objects. However, despite these drawbacks, they can detect objects that radars cannot detect in nearby regions. They can also recognize small obstacles such as boats that are not equipped with an automatic identification system (AIS) or buoys. Thus, vision sensors and radar can be used in a complementary manner. This paper proposes a vision sensor-based model, called Skip-ENet, for recognizing obstacles in real time. Compared with ENet, the amount of computation is not significantly higher. Further, Skip-ENet can segment complex marine obstacles effectively by increasing the values for the class accuracy and mean Intersection of Union (mIoU). Moreover, this model enables even low-cost embedded systems to compute 10 or more frames per second (fps). The superiority of the proposed model was verified by comparing its performance with that of the conventional segmentation models, MobileNet, ENet, and DeeplabV3+.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.