Macrophytes are the main primary producers in lake ecosystems and are the main transmitters of material and energy flows in lake ecosystems, directly influencing the structure and function of lake ecosystems. The balanced harvesting of aquatic plants is a cost-effective scientific management approach to maintain ecosystem health. The article defines “balanced harvesting” as an aquatic plant harvesting technique to optimize the structure of aquatic plant communities, maintain the normal function of the ecosystem material cycle and energy flow, and enhance the stability and resilience of the system. The ecological significance of balanced harvesting in regulating the evaporation coefficient of the subsurface, reducing the accumulation and release of endogenous nutrient loads in lakes, delaying the evolutionary process of marshification, inhibiting biological filling, increasing biodiversity and system stability, and improving the environment of water bodies under the natural laws of adapted aquatic plants is reviewed. The way, time, and method of the balanced harvesting of aquatic plants in Baiyangdian, a grass-type lake in the north, were analyzed in order to provide an important reference for wetland ecological restoration and protection, maintaining the health of the aquatic ecosystem, and making the lake environment sustainable.
The Ubiquitin-proteasome system (UPS) performs a crucial role in immune activation and tumorigenesis. Nevertheless, the comprehensive role of the ubiquitin-proteasome system in the low-grade glioma (LGG) tumor microenvironment (TME) remains unknown. Ubiquitination modification patterns in LGG patients and corresponding characteristics of tumor immune traits, CSC stemness, and cellular senescence were evaluated via a comprehensive analysis of 20 ubiquitination modification regulators. For quantification of the ubiquitination modification status of individual patients, the UM-score was constructed and associated with TME characteristics, clinical features, cancer stem cell stemness, cellular senescence, prognosis, and immunotherapy efficacy. We identified that alterations in multiple ubiquitination regulators are linked to patient survival and the shaping of the tumor microenvironment. We found two different styles of ubiquitination modification in patients with low-grade glioma (immune-inflamed differentiation and immune-exclude dedifferentiation), characterized by high and low UM-score, and the two regulatory patterns of ubiquitination modification on immunity, stemness feature, and cellular senescence. We demonstrate that the UM-score could forecast the subtype of LGG, the immunologic infiltration traits, the biological process, the stemness feature, and the cellular senescence trait. Notably, the UMscore was related to immunotherapeutic efficacy, implying that modifying ubiquitination modification patterns by targeting ubiquitination modification regulators or ubiquitination modification pattern signature genes to reverse unfavorable TME properties will provide new insights into cancer immunotherapy. This research indicated that the ubiquitin-proteasome system is crucial in the formation of TME complexity and multiformity. The UM-score can determine ubiquitination modification status in individual patients, bringing about more personalized and effective immunotherapeutic tactics.
In [S. L. Luo, Using measurement induced disturbance to characterize correlations as classical or quantum, Phys. Rev. A77 (2008) 022301], the author presented a statistical correlation measure for bipartite quantum states using measurement induced disturbance. In this paper, motivated by this correlation measure, we obtain some necessary conditions for [Formula: see text]-classical states in multipartite quantum systems, and obtain a relation between the set of [Formula: see text]-classical states and the set of [Formula: see text]-product states; Secondly, we introduce a class of correlation measures based on trace distance using measurement induced disturbance in order to quantify the strength of correlation for non-[Formula: see text]-classical states; Lastly, we introduce the concept of quantum channel with respect to [Formula: see text]-partition, it is simply denoted by identical-[Formula: see text]-channel, and furthermore discuss the influences of the correlation measure under identical-[Formula: see text]-channel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.