Highly alkaline electrolytes have been shown to improve the formation rate of C2+ products in the electrochemical reduction of carbon dioxide (CO2) and carbon monoxide (CO) on copper surfaces, with the assumption that higher OH− concentrations promote the C−C coupling chemistry. Herein, by systematically varying the concentration of Na+ and OH− at the same absolute electrode potential, we demonstrate that higher concentrations of cations (Na+), rather than OH−, exert the main promotional effect on the production of C2+ products. The impact of the nature and the concentration of cations on the electrochemical reduction of CO is supported by experiments in which a fraction or all of Na+ is chelated by a crown ether. Chelation of Na+ leads to drastic decrease in the formation rate of C2+ products. The promotional effect of OH− determined at the same potential on the reversible hydrogen electrode scale is likely caused by larger overpotentials at higher electrolyte pH.
Electrochemical reduction of carbon monoxide to high-value multi-carbon (C2+) products offers an appealing route to store sustainable energy and make use of the chief greenhouse gas leading to climate change, i.e., CO2. Among potential products, C2+ liquid products such as ethanol are of particular interest owing to their high energy density and industrial relevance. In this work, we demonstrate that Ag-modified oxide-derive Cu catalysts prepared via high-energy ball milling exhibit near 80% Faradaic efficiencies for C2+ liquid products at commercially relevant current densities (>100 mA cm−2) in the CO electroreduction in a microfluidic flow cell. Such performance is retained in an over 100-hour electrolysis in a 100 cm2 membrane electrode assembly (MEA) electrolyzer. A method based on surface-enhanced infrared absorption spectroscopy is developed to characterize the CO binding strength on the catalyst surface. The lower C and O affinities of the Cu–Ag interfacial sites in the prepared catalysts are proposed to be responsible for the enhanced selectivity for C2+ oxygenates, which is the experimental verification of recent computational predictions.
Highly alkaline electrolytes have been shown to improve the formation rate of C2+ products in the electrochemical reduction of carbon dioxide (CO2) and carbon monoxide (CO) on copper surfaces, with the assumption that higher OH− concentrations promote the C−C coupling chemistry. Herein, by systematically varying the concentration of Na+ and OH− at the same absolute electrode potential, we demonstrate that higher concentrations of cations (Na+), rather than OH−, exert the main promotional effect on the production of C2+ products. The impact of the nature and the concentration of cations on the electrochemical reduction of CO is supported by experiments in which a fraction or all of Na+ is chelated by a crown ether. Chelation of Na+ leads to drastic decrease in the formation rate of C2+ products. The promotional effect of OH− determined at the same potential on the reversible hydrogen electrode scale is likely caused by larger overpotentials at higher electrolyte pH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.