For the practical use of synthetic hydrogels as artificial biological tissues, flexible electronics, and conductive membranes, achieving requirements for specific mechanical properties is one of the most prominent issues. Here, we demonstrate superstrong, superstiff, and conductive alginate hydrogels with densely interconnecting networks implemented via simple reconstructing processes, consisting of anisotropic densification of pre-gel and a subsequent ionic crosslinking with rehydration. The reconstructed hydrogel exhibits broad ranges of exceptional tensile strengths (8–57 MPa) and elastic moduli (94–1,290 MPa) depending on crosslinking ions. This hydrogel can hold sufficient cations (e.g., Li+) within its gel matrix without compromising the mechanical performance and exhibits high ionic conductivity enough to be utilized as a gel electrolyte membrane. Further, this strategy can be applied to prepare mechanically outstanding, ionic-/electrical-conductive hydrogels by incorporating conducting polymer within the hydrogel matrix. Such hydrogels are easily laminated with strong interfacial adhesion by superficial de- and re-crosslinking processes, and the resulting layered hydrogel can act as a stable gel electrolyte membrane for an aqueous supercapacitor.
Hydrogels are major components of the human body. To replace a damaged hydrogel in the body or support/monitor its normal operation, artificial hydrogels similar to those found in nature are required. As the development of morphologically adaptable soft yet tough hydrogels such as double‐network (DN) and polyampholyte (PA) gels, they are applied to soft tissues such as the neural and epithelial tissues with elastic moduli ranging from a few pascals to several kilopascals. However, creating strong and stiff hydrogels emulating stiff load‐bearing connective tissues with elastic moduli in the MPa‐to‐GPa range remains challenging. Herein, recent strategies and potential methods for strengthening and stiffening tough DN and PA gels (such as the reinforcement addition, polymer chain alignment, and solvent exchange) as well as the reinforcing and fracture mechanisms of the resulting hydrogels are summarized. The objective is to provide some insights into the optimal strategy and method for fabricating hydrogels with a combination of strength, stiffness, and toughness, which can emulate natural load‐bearing tissues.
In the development of artificial hydrogels, emulating the mechanical properties of biological tissues with a desirable combination of stiffness and toughness is crucial. To achieve such properties, a design principle inspired by a natural structural composite to wet hydrogels is applied. The bioinspired structural composite hydrogel consisting of layered microplatelets and polymer matrix with strong polymer–platelet interactions is fabricated by a facile method, that is, drying‐induced unidirectional shrinkage and rehydration process coupled with secondary ionic crosslinking. The resulting hydrogels exhibit a combination of high tensile strength and elastic modulus (on the order of several MPa) and high fracture energy (up to ≈2 kJ·m−2). The results suggest the potential of the bioinspired approach that is limitedly applied in dry composites for developing mechanically robust composite hydrogels.
The fabrication of mechanically superior polymer composite films with controllable shapes on various scales is difficult. Despite recent research on polymer composites consisting of organic matrices and inorganic materials with layered structures, these films suffer from complex preparations and limited mechanical properties that do not have even integration of high strength, stiffness, and toughness. Herein, a hydrogel-film casting approach to achieve fabrication of simultaneously strong, stiff, and tough polymer composite films with well-defined microstructure, inspired from a layer-by-layer structure of nacre is reported. Ca -crosslinked alginate hydrogels incorporated with platelet-like alumina particles are dried to form composite films composed of horizontally aligned alumina platelets and alginate matrix with uniformly layered microstructure. Alumina platelets are evenly distributed parallel without precipitations and contribute to synergistic enhancements of strength, stiffness and toughness in the resultant film. Consequentially, Ca -crosslinked alginate/alumina (Ca -Alg/Alu) films show exceptional tensile strength (267 MPa), modulus (17.9 GPa), and toughness (3.60 MJ m ). Furthermore, the hydrogel-film casting allows facile preparation of polymer composite films with controllable shapes and various scales. The results suggest an alternative approach to design and prepare polymer composites with the layer-by-layer structure for superior mechanical properties.
Intensive studies on nacre-inspired composites with exceptional mechanical properties based on an organic/inorganic hierarchical layered structure have been conducted; however, integrating high strength, stiffness, and toughness for engineering materials still remains a challenge. We herein report the design and fabrication of polymer composites through a hydrogel-film casting method that allow for building uniformly layered organic/inorganic microstructure. Alginate (Alg) was used for an organic matrix, whose mechanical properties were controlled by Ca2+ cross-linking toward the simultaneously strong, stiff, and tough resultant composite. Alumina (Alu) microplatelets were used for horizontally aligned inorganic phase, and their alignment and interactions with the organic matrix were improved by polyvinylpyrrolidone (PVP) coating on the platelet. The composite film exhibits well-balanced elastic and plastic deformation under tensile stress, leading to high stiffness and toughness, which have not been generally achieved in microplatelet-based composite films developed in previous studies. The synergistic effect of Ca2+ cross-linking and PVP-coated Alu platelets on the mechanical properties improved polymer–platelet interfacial interactions, and platelet alignment is clearly demonstrated through mechanical tests and Fourier transform infrared and X-ray diffraction analyses. We further demonstrate that the reinforcing effect of the Alu platelet and PVP-coated platelet on the mechanical properties is dependent on humidity. Such effects are maximized at highly dry conditions, which is consistent with the model estimation. Furthermore, a thick bulk composite was produced by laminating thin films and showed high mechanical properties under flexural stress. Our design and fabrication strategies combined with the understanding of their mechanism yield an alternative approach to produce engineered composite materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.