Due to the risk of data leakage while training deep learning models in a shared environment, we propose a new privacy-preserving deep learning(PPDL) method using a structural image deidentification approach for object classification. The proposed structural image de-identification approach is designed based on the fact that the degree of structural distortion of an image object has the greatest impact on human's perceptual system. Thus, by modifying only the structural parts of the original one using order preserving encryption(OPE), the proposed structural image de-identification approach decreases only the recognition rate by human. From the experimental results using different standard datasets, we show that the object classification accuracy of the proposed structural image de-identification method is almost the same as the deep learning performance for non-encrypted images, without revealing the original image contents including sensitive information. Also, by handling the trade-off between object classification accuracy and privacy protection for the de-identified image, we experimentally find the optimal size of input image for the proposed structural image de-identification approach.
With the development of wireless networks and mobile devices, interest on indoor localization systems (ILSs) has increased. In particular, Wi-Fi-based ILSs are widely used because of the good prediction accuracy without additional hardware. However, as the prediction accuracy decreases in environments with natural noise, some studies were conducted to remove it. So far, two representative methods, i.e., the filtering-based method and deep learning-based method, have shown a significant effect in removing natural noise. However, the prediction accuracy of these methods severely decreased under artificial noise caused by adversaries. In this paper, we introduce a new media access control (MAC) spoofing attack scenario injecting artificial noise, where the prediction accuracy of Wi-Fi-based indoor localization system significantly decreases. We also propose a new deep learning-based indoor localization method using random forest(RF)-filter to provide the good prediction accuracy under the new MAC spoofing attack scenario. From the experimental results, we show that the proposed indoor localization method provides much higher prediction accuracy than the previous methods in environments with artificial noise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.