A substantial fraction of disease-causing mutations are pathogenic through aberrant splicing. Although genome profiling studies have identified somatic single-nucleotide variants (SNVs) in cancer, the extent to which these variants trigger abnormal splicing has not been systematically examined. Here we analyzed RNA sequencing and exome data from 1,812 patients with cancer and identified ∼900 somatic exonic SNVs that disrupt splicing. At least 163 SNVs, including 31 synonymous ones, were shown to cause intron retention or exon skipping in an allele-specific manner, with ∼70% of the SNVs occurring on the last base of exons. Notably, SNVs causing intron retention were enriched in tumor suppressors, and 97% of these SNVs generated a premature termination codon, leading to loss of function through nonsense-mediated decay or truncated protein. We also characterized the genomic features predictive of such splicing defects. Overall, this work demonstrates that intron retention is a common mechanism of tumor-suppressor inactivation.
The intermediate filament protein, nestin, is a widely employed marker of multipotent neural stem cells (NSCs). Recent in vitro studies have implicated nestin in a number of cellular processes, but there is no data yet on its in vivo function. Here, we report the construction and functional characterization of Nestin knockout mice. We found that these mice show embryonic lethality, with neuroepithelium of the developing neural tube exhibiting significantly fewer NSCs and much higher levels of apoptosis. Consistent with this in vivo observation, NSC cultures derived from knockout embryos show dramatically reduced self-renewal ability that is associated with elevated apoptosis but no overt defects in cell proliferation or differentiation. Unexpectedly, nestin deficiency has no detectable effect on the integrity of the cytoskeleton. Furthermore, the knockout of Vimentin, which abolishes nestin's ability to polymerize into intermediate filaments in NSCs, does not lead to any apoptotic phenotype. These data demonstrate that nestin is important for the proper survival and self-renewal of NSCs, and that this function is surprisingly uncoupled from nestin's structural involvement in the cytoskeleton.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.