In this study, microstructures of weldment produced using carbon steel A516 grade 60 were analysed via a deep learning approach to measure the fraction of acicular ferrite which considerably influences on mechanical properties of carbon steel. The fully convolutional network was used to conduct the image segmentation. Submerged arc welding was used for welding, and the dataset was constructed using optical microscope. The model was compiled with ResNet, which is the state-of-the-art classifier used as an encoder. The model is trained to distinguish acicular ferrite from microstructures of dataset images and then estimate its accuracy. As a result, the mean intersection over union, which is a metric commonly used to evaluate image segmentation, was shown to be higher than 85%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.