Crashing is shortening the project makespan by reducing activity times in a project network by allocating resources to them. Activity durations are often uncertain and an exact probability distribution itself might be ambiguous. We study a class of distributionally robust project crashing problems where the objective is to optimize the first two marginal moments (means and SDs) of the activity durations to minimize the worst‐case expected makespan. Under partial correlation information and no correlation information, the problem is solvable in polynomial time as a semidefinite program and a second‐order cone program, respectively. However, solving semidefinite programs is challenging for large project networks. We exploit the structure of the distributionally robust formulation to reformulate a convex‐concave saddle point problem over the first two marginal moment variables and the arc criticality index variables. We then use a projection and contraction algorithm for monotone variational inequalities in conjunction with a gradient method to solve the saddle point problem enabling us to tackle large instances. Numerical results indicate that a manager who is faced with ambiguity in the distribution of activity durations has a greater incentive to invest resources in decreasing the variations rather than the means of the activity durations.
In this paper, we propose a probabilistic model for minimizing the anticipated regret in combinatorial optimization problems with distributional uncertainty in the objective coefficients. The interval uncertainty representation of data is supplemented with information on the marginal distributions. As a decision criterion, we minimize the worst-case conditional value-at-risk of regret. The proposed model includes the standard interval data minmax regret as a special case. For the class of combinatorial optimization problems with a compact convex hull representation, a polynomial sized mixed integer linear program (MILP) is formulated when (a) the range and mean are known, and (b) the range, mean and mean absolute deviation are known while a mixed integer second order cone program (MISOCP) is formulated when (c) the range, mean and standard deviation are known. For the subset selection problem of choosing K elements of maximum total weight out of a set of N elements, the probabilistic regret model is shown to be solvable in polynomial time in the instances (a) and (b) above. This extends the current known polynomial complexity result for minmax regret subset selection with range information only.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.