MicroRNA-93 (miR-93) has been found to be up-regulated in multiple malignancies. miR-93 might promote the proliferation and invasion of prostate cancer cell. In the present study, we aimed to investigate the expression level of miR-93 in prostate cancer tissues and its clinical and prognostic value in patients with prostate cancer.
A total of 103 paired prostate cancer tissues and adjacent normal tissues were obtained from male patients who underwent surgical treatment in the department of urology, Huizhou Third People's Hospital, Guangzhou Medical University between July 2014 and March 2018. The correlation between prostate cancer characteristics and miR-93 expression was examined by chi-square test. Patient survival was evaluated using the Kaplan–Meier method and compared using log-rank test. Univariate and multivariate Cox regression analyses were performed for survival data.
Compared to noncancerous prostate tissues, the expression levels of miR-93 in prostate cancer tissues were significantly increased (P < .001). High level of miR-93 expression was significantly correlated with Gleason score (P = .018), lymph node involvement (P = .026), bone metastasis (P < .001), and Tumor Node Metastasis (TNM) stage (P < .001). The 5-year overall survival rate in the high expression group was lower than that in the low expression group (log-rank test, P = .031). Multivariate Cox regression analysis showed that miR-93 expression level (HR = 2.181, 95% CI: 1.092-6.829, P = .028) was an independent factor in predicting the overall survival of prostate cancer patients.
The present study demonstrated that increased expression of miR-93 correlates with progression and prognosis of prostate cancer. These fndings suggest miR-93 may serve as a novel target for prostate cancer prognosis and therapy.
The hypervelocity impact experiments of spherical LY12 aluminum projectile diameter of 6.4 mm on LY12 aluminum target thickness of 23 mm have been conducted using a two-stage light gas gun. The impact velocity of the projectile is 5.2, 5.7, and 6.3 km/s, respectively. The experimental results show that the plasma phase transition appears under the current experiment conditions, and the plasma expansion consists of accumulation, equilibrium, and attenuation. The plasma characteristic parameters decrease as the plasma expands outward and are proportional with the third power of the impact velocity, i.e., (Te, ne) ∝ vp3. Based on the experimental results, a theoretical model on the plasma expansion is developed and the theoretical results are consistent with the experimental data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.