Background Wieacker‐Wolff syndrome (WWS) is a congenital X‐linked neuromuscular disorder, which was firstly reported in 1985. Zinc finger C4H2‐type containing (ZC4H2) gene has been found to be associated with the disease pathogenesis. However, the underlying mechanism remains elusive. Methods Whole‐exome sequencing was performed to identify the mutations. Expression plasmids were constructed and cell culture and immune‐biochemical assays were used to examine the effects of the mutation. Results We reported a female patient with classical symptoms of WWS and discovered a novel nonsense heterozygous mutation (p.R67X; c.199C>T) in ZC4H2 gene in the patient but not in her parents. The mutation resulted in a 66 amino‐acid truncated ZC4H2 protein. The mutation is located in the key helix domain and it altered the subcellular locations of the mutant ZC4H2 protein. X‐chromosome inactivation (XCI) pattern analysis revealed that the XCI ratio of the proband was 22:78. Conclusion Female heterozygous carriers with nonsense mutation with a truncated ZC4H2 protein could lead to the pathogenesis of Wieacker‐Wolff syndrome and our study provides a potential new target for the disease treatment.
Increased endogenous hydrogen sulfide (H2S) level by cystathionine β-synthase (CBS) has been shown to closely relate tumorigenesis. H2S promotes angiogenesis, stimulates bioenergy metabolism and inhibits selective phosphatases. However, the role of CBS and H2S in chronic myeloid leukemia (CML) remains elusive. In this study, we found that CBS and H2S levels were increased in the bone marrow mononuclear cells of pediatric CML patients, as well as in the CML-derived K562 cells and CBS expression levels were correlated with different disease phases. Inhibition of CBS reduced the proliferation of the CML primary bone marrow mononuclear cells and induced growth inhibition, apoptosis, cell cycle arrest, and migration suppression in K562 cells and tumor xenografts. The knockdown of CBS expression by shRNA and inhibiting CBS activity by AOAA decreased the endogenous H2S levels, promoted mitochondrial-related apoptosis and inhibited the NF-κB-mediated gene expression. Our study suggests that inhibition of CBS induces cell apoptosis, as well as limits cell proliferation and migration, a potential target for the treatment of chronic myeloid leukemia.
Background: Down syndrome (DS) is caused by an extra copy of all or part of chromosome 21. The patients with DS develop typical Alzheimer’s disease (AD) neuropathology, indicating the role of genes on human chromosome 21 (HSA21) in the pathogenesis of AD. Purkinje cell protein 4 (PCP4), also known as brain-specific protein 19, is a critical gene located on HSA21. However, the role of PCP4 in DS and AD pathogenesis is not clear. Objective: To explore the role of PCP4 in amyloid-β protein precursor (AβPP) processing in AD. Methods: In this study, we investigated the role of PCP4 in AD progression in vitro and in vivo. In vitro experiments, we overexpressed PCP4 in human Swedish mutant AβPP stable expression or neural cell lines. In vitro experiments, APP23/PS45 double transgenic mice were selected and treated with AAV-PCP4. Multiple topics were detected by western blot, RT-PCR, immunohistochemical and behavioral test. Results: We found that PCP4 expression was altered in AD. PCP4 was overexpressed in APP23/PS45 transgenic mice and PCP4 affected the processing of AβPP. The production of amyloid-β protein (Aβ) was also promoted by PCP4. The upregulation of endogenous AβPP expression and the downregulation of ADAM10 were due to the transcriptional regulation of PCP4. In addition, PCP4 increased Aβ deposition and neural plaque formation in the brain, and exuberated learning and memory impairment in transgenic AD model mice. Conclusion: Our finding reveals that PCP4 contributes to the pathogenesis of AD by affecting AβPP processing and suggests PCP4 as a novel therapeutic target for AD by targeting Aβ pathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.