Berberine (BBR) is a compound originally identified in a Chinese herbal medicine Huanglian (Coptis chinensis French). It improves glucose metabolism in type 2 diabetic patients. The mechanisms involve in activation of adenosine monophosphate activated protein kinase (AMPK) and improvement of insulin sensitivity. However, it is not clear if BBR reduces blood glucose through other mechanism. In this study, we addressed this issue by examining liver response to BBR in diabetic rats, in which hyperglycemia was induced in Sprague-Dawley rats by high fat diet. We observed that BBR decreased fasting glucose significantly. Gluconeogenic genes, Phosphoenolpyruvate carboxykinase (PEPCK) and Glucose-6-phosphatase (G6Pase), were decreased in liver by BBR. Hepatic steatosis was also reduced by BBR and expression of fatty acid synthase (FAS) was inhibited in liver. Activities of transcription factors including Forkhead transcription factor O1 (FoxO1), sterol regulatory element-binding protein 1c (SREBP1) and carbohydrate responsive element-binding protein (ChREBP) were decreased. Insulin signaling pathway was not altered in the liver. In cultured hepatocytes, BBR inhibited oxygen consumption and reduced intracellular adenosine triphosphate (ATP) level. The data suggest that BBR improves fasting blood glucose by direct inhibition of gluconeogenesis in liver. This activity is not dependent on insulin action. The gluconeogenic inhibition is likely a result of mitochondria inhibition by BBR. The observation supports that BBR improves glucose metabolism through an insulin-independent pathway.
Our results suggest ERAS/FTS protocols are powerful tools to prevent HAIs. Further study is needed to establish the mechanism. Providers should consider adoption of similar transdisciplinary programs to reduce perioperative HAIs and at the same time improve the value of surgical care.
BackgroundThis study aims to establish a radiomics analysis system for the diagnosis and clinical behaviour prediction of hepatocellular carcinoma (HCC) based on multi-parametric ultrasound imaging.MethodsA total of 177 patients with focal liver lesions (FLLs) were included in the study. Every patient underwent multi-modal ultrasound examination, including B-mode ultrasound (BMUS), shear wave elastography (SWE), and shear wave viscosity (SWV) imaging. The radiomics analysis system was built on sparse representation theory (SRT) and support vector machine (SVM) for asymmetric data. Through the sparse regulation from the SRT, the proposed radiomics system can effectively avoid over-fitting issues that occur in regular radiomics analysis. The purpose of the proposed system includes differential diagnosis between benign and malignant FLLs, pathologic diagnosis of HCC, and clinical prognostic prediction. Three biomarkers, including programmed cell death protein 1 (PD-1), antigen Ki-67 (Ki-67) and microvascular invasion (MVI), were included and analysed. We calculated the accuracy (ACC), sensitivity (SENS), specificity (SPEC) and area under the receiver operating characteristic curve (AUC) to evaluate the performance of the radiomics models.ResultsA total of 2560 features were extracted from the multi-modal ultrasound images for each patient. Five radiomics models were built, and leave-one-out cross-validation (LOOCV) was used to evaluate the models. In LOOCV, the AUC was 0.94 for benign and malignant classification (95% confidence interval [CI]: 0.88 to 0.98), 0.97 for malignant subtyping (95% CI: 0.93 to 0.99), 0.97 for PD-1 prediction (95% CI: 0.89 to 0.98), 0.94 for Ki-67 prediction (95% CI: 0.87 to 0.97), and 0.98 for MVI prediction (95% CI: 0.93 to 0.99). The performance of each model improved when the viscosity modality was included.ConclusionsRadiomics analysis based on multi-modal ultrasound images could aid in comprehensive liver tumor evaluations, including diagnosis, differential diagnosis, and clinical prognosis.
Intraoperative LTV ventilation in conjunction with PEEP and intermittent recruitment maneuvers is associated with significantly improved clinical pulmonary outcomes and reduction in length of hospital stay in otherwise healthy patients undergoing general surgery. Providers should consider application of all the 3 elements for a comprehensive protective ventilation strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.