Background Ageing, chronic diseases, prolonged inactivity, and inadequate nutrition pose a severe threat to skeletal muscle health and function. To date, experimental evidence suggests that ageing‐related subclinical inflammation could be an important causative factor in sarcopenia. Although inflammatory signalling has been implicated in the pathogenesis of experimental animal models of sarcopenia, few studies have surveyed the clinical association between circulating factors and muscle mass in patients before and after lifestyle interventions. In this study, we evaluated whether proinflammatory cytokines are associated with the onset of sarcopenia, which circulating factors are associated with the severity of sarcopenia, and how these factors change after lifestyle interventions in sarcopenic elderly persons. Methods A total of 56 elderly subjects (age ≥ 60 years) with sarcopenia and 56 elderly non‐sarcopenic subjects, who met entry criteria and had given informed consent, were selected from the Peking Union Medical College Hospital multicentre prospective longitudinal sarcopenia study for testing relevant circulating factors. Thirty‐two elderly subjects from the sarcopenic cohort completed a 12 week intensive lifestyle intervention programme with whey supplements (30 g/day) and a personalized resistance training regimen. The levels of proinflammatory cytokines and metabolic hormones, pre‐intensive and post‐intensive lifestyle interventions, were measured. Results The sarcopenic group was significantly older (72.05 ± 6.54 years; P < 0.001), more likely to be inactive and female (57.1% of all sarcopenic patients), and had a higher prevalence of type 2 diabetes (16% higher risk). Compared with non‐sarcopenic subjects, serum interleukin (IL)‐6, IL‐18, tumour necrosis factor‐α (TNF‐α), TNF‐like weak inducer of apoptosis (TWEAK), and leptin were significantly higher, while insulin growth factor 1, insulin, and adiponectin were significantly lower in sarcopenic patients (all P < 0.05). Logistic regression analyses revealed that high levels of TNF‐α (>11.15 pg/mL) and TWEAK (>1276.48 pg/mL) were associated with a 7.6‐fold and 14.3‐fold increased risk of sarcopenia, respectively. After adjustment for confounding variables, high levels of TWEAK were still associated with a 13.4‐fold increased risk of sarcopenia. Intensive lifestyle interventions led to significant improvements in sarcopenic patients' muscle mass and serum profiles of TWEAK, TNF‐α, IL‐18, insulin, and adiponectin (all P < 0.05). Conclusions High levels of the inflammatory cytokines TWEAK and TNF‐α are associated with an increased risk of sarcopenia, while the metabolic hormones insulin growth factor 1, insulin, and adiponectin are associated with a decreased risk of sarcopenia in our Chinese patient cohort. Intensive lifestyle interventions could signif...
Anthocyanin fruit (Aft) and atroviolacea (atv) were characterized in wild tomato and can enhance anthocyanin content in tomato fruit. However, the gene underlying the Aft locus and the mechanism by which Aft and atv act remain largely unknown.In this study, the Aft locus was fine-mapped to an approximately 145-kb interval on chromosome 10, excluding SlAN2 (Solyc10g086250), SlANT1 (Solyc10g086260) and SlANT1like (Solyc10g086270), which have previously been suggested as candidates. Thus, the R2R3-MYB transcription factor SlAN2-like (Solyc10g086290) was considered the best candidate gene for Aft.The CRISPR/Cas9-mediated SlAN2-like mutants show a much lower accumulation of anthocyanins associated with the downregulation of multiple anthocyanin-related genes compared to the wild-type tomato, indicating that SlAN2-like is responsible for the Aft phenotype. The repressive function of SlMYBATV also was confirmed through the CRISPR/Cas9 approach. A yeast-two-hybrid assay revealed that SlMYBATV interacts with the bHLH protein SlJAF13. Furthermore, yeast-one-hybrid and dual-luciferase transient expression assays showed that Aft directly binds to the SlMYBATV promoter and activates its expression.The results herein provide candidate genes to enhance anthocyanin content in tomato fruit. This research also provides insight into a mechanism involving the Aft-SlMYBATV pathway that fine-tunes anthocyanin accumulation in tomato fruit.
ObjectiveInsulinomas and non-functional pancreatic neuroendocrine tumours (NF-PanNETs) have distinctive clinical presentations but share similar pathological features. Their genetic bases have not been comprehensively compared. Herein, we used whole-genome/whole-exome sequencing (WGS/WES) to identify genetic differences between insulinomas and NF-PanNETs.DesignThe mutational profiles and copy-number variation (CNV) patterns of 211 PanNETs, including 84 insulinomas and 127 NF-PanNETs, were obtained from WGS/WES data provided by Peking Union Medical College Hospital and the International Cancer Genome Consortium. Insulinoma RNA sequencing and immunohistochemistry data were assayed.ResultsPanNETs were categorised based on CNV patterns: amplification, copy neutral and deletion. Insulinomas had CNV amplifications and copy neutral and lacked CNV deletions. CNV-neutral insulinomas exhibited an elevated rate of YY1 mutations. In contrast, NF-PanNETs had all three CNV patterns, and NF-PanNETs with CNV deletions had a high rate of loss-of-function mutations of tumour suppressor genes. NF-PanNETs with CNV alterations (amplification and deletion) had an elevated risk of relapse, and additional DAXX/ATRX mutations could predict an increased relapse risk in the first 2-year period.ConclusionThese WGS/WES data allowed a comprehensive assessment of genetic differences between insulinomas and NF-PanNETs, reclassifying these tumours into novel molecular subtypes. We also proposed a novel relapse risk stratification system using CNV patterns and DAXX/ATRX mutations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.