Tumor heterogeneity presents a challenge for inferring clonal evolution and driver gene identification. Here, we describe a method for analyzing the cancer genome at a single-cell nucleotide level. To perform our analyses, we first devised and validated a high-throughput whole-genome single-cell sequencing method using two lymphoblastoid cell line single cells. We then carried out whole-exome single-cell sequencing of 90 cells from a JAK2-negative myeloproliferative neoplasm patient. The sequencing data from 58 cells passed our quality control criteria, and these data indicated that this neoplasm represented a monoclonal evolution. We further identified essential thrombocythemia (ET)-related candidate mutations such as SESN2 and NTRK1, which may be involved in neoplasm progression. This pilot study allowed the initial characterization of the disease-related genetic architecture at the single-cell nucleotide level. Further, we established a single-cell sequencing method that opens the way for detailed analyses of a variety of tumor types, including those with high genetic complex between patients.
Clear cell renal cell carcinoma (ccRCC) is the most common kidney cancer and has very few mutations that are shared between different patients. To better understand the intratumoral genetics underlying mutations of ccRCC, we carried out single-cell exome sequencing on a ccRCC tumor and its adjacent kidney tissue. Our data indicate that this tumor was unlikely to have resulted from mutations in VHL and PBRM1. Quantitative population genetic analysis indicates that the tumor did not contain any significant clonal subpopulations and also showed that mutations that had different allele frequencies within the population also had different mutation spectrums. Analyses of these data allowed us to delineate a detailed intratumoral genetic landscape at a single-cell level. Our pilot study demonstrates that ccRCC may be more genetically complex than previously thought and provides information that can lead to new ways to investigate individual tumors, with the aim of developing more effective cellular targeted therapies.
BackgroundSingle-cell resequencing (SCRS) provides many biomedical advances in variations detection at the single-cell level, but it currently relies on whole genome amplification (WGA). Three methods are commonly used for WGA: multiple displacement amplification (MDA), degenerate-oligonucleotide-primed PCR (DOP-PCR) and multiple annealing and looping-based amplification cycles (MALBAC). However, a comprehensive comparison of variations detection performance between these WGA methods has not yet been performed.ResultsWe systematically compared the advantages and disadvantages of different WGA methods, focusing particularly on variations detection. Low-coverage whole-genome sequencing revealed that DOP-PCR had the highest duplication ratio, but an even read distribution and the best reproducibility and accuracy for detection of copy-number variations (CNVs). However, MDA had significantly higher genome recovery sensitivity (~84 %) than DOP-PCR (~6 %) and MALBAC (~52 %) at high sequencing depth. MALBAC and MDA had comparable single-nucleotide variations detection efficiency, false-positive ratio, and allele drop-out ratio. We further demonstrated that SCRS data amplified by either MDA or MALBAC from a gastric cancer cell line could accurately detect gastric cancer CNVs with comparable sensitivity and specificity, including amplifications of 12p11.22 (KRAS) and 9p24.1 (JAK2, CD274, and PDCD1LG2).ConclusionsOur findings provide a comprehensive comparison of variations detection performance using SCRS amplified by different WGA methods. It will guide researchers to determine which WGA method is best suited to individual experimental needs at single-cell level.Electronic supplementary materialThe online version of this article (doi:10.1186/s13742-015-0068-3) contains supplementary material, which is available to authorized users.
Handpick single cancer cells: A modified NanoVelcro Chip is coupled with ArcturusXT laser capture microdissection (LCM) technology to enable the detection and isolation of single circulating tumor cells (CTCs) from patients with prostate cancer (PC). This new approach paves the way for conducting next‐generation sequencing (NGS) on single CTCs.
The landscape of genetic alterations in lung adenocarcinoma derived from Asian patients is largely uncharacterized. Here we present an integrated genomic and transcriptomic analysis of 335 primary lung adenocarcinomas and 35 corresponding lymph node metastases from Chinese patients. Altogether 13 significantly mutated genes are identified, including the most commonly mutated gene TP53 and novel mutation targets such as RHPN2, GLI3 and MRC2. TP53 mutations are furthermore significantly enriched in tumours from patients harbouring metastases. Genes regulating cytoskeleton remodelling processes are also frequently altered, especially in metastatic samples, of which the high expression level of IQGAP3 is identified as a marker for poor prognosis. Our study represents the first large-scale sequencing effort on lung adenocarcinoma in Asian patients and provides a comprehensive mutational landscape for both primary and metastatic tumours. This may thus form a basis for personalized medical care and shed light on the molecular pathogenesis of metastatic lung adenocarcinoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.