Diosbulbin B (DIOB), a furan-containing diterpenoid lactone, is the most abundant component of Dioscorea bulbifera L. (DB), a traditional Chinese medicine herb. Administration of purified DIOB or DB extracts has been reported to cause liver injury in animals. The mechanisms of DIOB-induced hepatotoxicity remain unknown. The major objective of this study was to identify reactive metabolites of DIOB. A DIOB-derived cis-enedial was trapped by N-acetyl lysine (NAL) and glutathione (GSH) or N-acetyl cysteine (NAC) in rat and human liver microsomal incubation systems after exposure to DIOB. Four metabolites (M1-M4) associated with GSH were detected by liquid chromatography coupled to tandem mass spectrometry. Apparently, M1 was derived from both NAL and GSH. M2 and M3 resulted from the reaction of GSH without the involvement of NAL. Two molecules of GSH participated in the formation of M4. M2 and M3 were also detected in bile and urine of rats given DIOB. M5, a DIOB-derived NAC/NAL conjugate, was detected in microsomal incubations with DIOB fortified with NAC and NAL as trapping agents. Biomimetic M1-M5 were prepared by oxidation of DIOB with Oxone for metabolite identification. Microsomal incubation study demonstrated that ketoconazole inhibited the production of the enedial in a concentration-dependent manner, and CYP3A4 was found to be the enzyme responsible for the metabolic activation of DIOB. The metabolism study facilitates the understanding of the role of bioactivation of DIOB in its hepatotoxicity.
Diosbulbin B (DIOB), a furanoid, is a major constituent of herbal medicine Dioscorea bulbifera L. Exposure to DIOB caused liver injury in humans and experimental animals. The mechanisms of DIOB-induced hepatotoxicities remain unknown. The present study demonstrated that DIOB induced hepatotoxicities in a time- and dose-dependent manner in mice. H&E stained histopathologic image showed the occurrence of necrosis in the liver obtained from the mice treated with DIOB at dose of 200 mg/kg. Pretreatment with KTC protected the animals from hepatotoxicities and hepatic GSH depletion induced by DIOB, increased area under the concentration-time curve of blood DIOB, decreased urinary excretion of GSH conjugates derived from DIOB, and increased urinary excretion of parent drug. Pretreatment with BSO exacerbated DIOB-induced hepatotoxicities. In order to define the role of furan moiety in DIOB-induced liver toxicities, we replaced the furan of DIOB with a tetrahydrofuran group by chemical hydrogenation of the furan ring of DIOB. No liver injury was observed in the animals given the same doses of tetrahydro-DIOB. The furan moiety was essential for DIOB-induced hepatotoxicities. The results implicate the cis-enedial reactive metabolite of DIOB was responsible for the observed toxicities. The observed modest depletion of hepatic GSH in DIOB-treated animals suggests the actions of one or more reactive metabolites, and the hepatic injury observed could be due at least in part to reactions of these metabolites with crucial biomolecules. Cytochrome P450 3A enzymes are implicated in DIOB-induced hepatotoxicities by catalyzing the formation of the reactive metabolite of DIOB.
Furanoid 8-epidiosbulbin E acetate (EEA) is a major constituent of herbal medicine Dioscorea bulbifera L. (DB), a traditional Chinese medicine herb. Our preliminary studies demonstrated that administration of EEA caused acute hepatotoxicity in mice, and the observed toxicity required cytochromes P450-mediated metabolism. Metabolic activation studies of EEA were performed in vitro and in vivo. Microsomal incubations of EEA supplemented with N-acetyl lysine (NAL) and glutathione (GSH) generated six metabolites (M1-M6). M1-M4 were characterized as pyrrole derivatives, and M5 and M6 were pyrrolinones. M2-M6 were detected in bile and/or urine of rats given EEA. Dimethyldioxirane-mediated oxidation of EEA in the presence of NAL and GSH produced M1-M6, all of which were generated in microsomal incubations. The structures of M3 and M6 were confirmed by (1)H and (13)C NMR. These findings provide evidence for the metabolic activation of EEA to the corresponding cis-enedial intermediate both in vitro and in vivo. Ketoconazole inhibited the microsomal production of the cis-enedial, and P450 3A4 was found to be the primary enzyme involved in the bioactivation of EEA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.