High-fidelity numerical simulations have been performed to study the formation and fragmentation of liquid sheets formed by two impinging jets using an improved volume-of-fluid (VOF) method augmented with several adaptive mesh refinement (AMR) techniques. An efficient topology-oriented strategy was further established to optimize the performance and accuracy of the AMR algorithm. Two benchmark cases pertaining to low-and high-velocity impinging jets are simulated as part of a grid refinement study. Calculated jet dynamics show excellent agreement with experimental observations in terms of the rim shape, droplet size distribution and impact wave structures. Detailed flow physics associated with the temporal evolution and spatial development of the jets are explored over a wide range of Reynolds and Weber numbers. A realistic rendering post-processing using a ray-tracing technique is performed to obtain direct insight to the flow evolution. Special attention is paid to the dynamics of the impact wave which dominates the atomization of the injected liquid. The work appears to be the first systematic numerical study in which all the flow patterns formed by impingement of two liquid jets are obtained. Fine structures are captured based on their characteristic length scales. Various atomization modes, from stable to highly unstable, are resolved with high fidelity.
Dynamic failure and ejection characteristics of a periodic grooved Sn surface under unsupported shock loading are studied using a smoothed particle hydrodynamics method. An "Eiffel Tower" spatial structure is observed, which is composed of high-speed jet tip, high-density jet slug, longitudinal tensile sparse zone, and complex broken zone between grooves. It is very different from the spike-bubble structure under supported shocks, and has been validated by detonation loading experiments. In comparison with that under supported shocks at the same peak pressure, the high-speed ejecta decreases obviously, whereas the truncated location of ejecta moves towards the interior of the sample and the total mass of ejecta increases due to the vast existence of low-speed broken materials. The shock wave profile determines mainly the total ejection amount, while the variation of V-groove angle will significantly alter the distribution of middle-and high-speed ejecta, and the maximum ejecta velocity has a linear correlation with the groove angle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.