This paper applies a Adaptive Random search with Intensification and Diversification combined with Genetic Algorithm (RasID-GA) to neural network training. In the previous work, we proposed RasID-GA which combines the best properties of RasID and Genetic Algorithm for optimization. Neural networks are widely used in pattern recognition, system modeling, prediction and other areas. Although most neural network training uses gradient based schemes such as wellknown back-propagation (BP), but sometimes BP is easily dropped into local minima. In this paper, we train multi-branch neural networks using RasID-GA with constraint coefficient C by which the feasible solution space is controlled. In addition, we use Mackey-Glass time prediction to test a generalization ability of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.