Carbon nanotubes (CNTs) embedded polymers are of increasing interest to scientific and industrial communities for multi-functional applications. In this article, CNTs have been introduced to high-strength epoxy adhesive for enabling in-situ strain sensing in adhesively bonded aluminium-to-aluminium single-lap joints to accurately indicate the onset and propagation of adhesion failure to the evolution of piezo-resistivity in varying mechanical loads. The CNT modified adhesive in bonded joints and the CNT modified adhesive alone have been tested under monothonic and cyclic tensile loads up to ultimate failure. The changes in the piezo-resistivity induced by the CNTs have been monitored in situ with respect to loading. A novel interpretation method has been developed for progressive, instantaneous adhesion failure estimation under cyclic tensile stresses from a resistivity baseline. The method indicates that the in-situ resistivity changes and the rate of the changes with strain, i.e. sensitivity, strongly correlate with the adhesion failure progression, irrespective of the CNT dispersion quality. Moreover, the effect of bond thickness on the evolution of piezo-resistivity and adhesion failure have been studied. It was observed that relatively thin adhesive bonds (0.18 mm thickness), possessing higher CNT contact points than thick bonds (0.43 mm thickness), provide 100 times higher sensitivity to varying cyclic loads.
Carbon nanotubes (CNTs) are inherently multifunctional, conductive and possess piezo-resistive characteristics. Aiming at the multi-functionality of materials, nanocomposites made of epoxy resin with embedded CNTs are a promising solution for strain self-sensing applications. A critical parameter to achieve repeatable and reliable measure is the CNTs dispersion state in the resin. This study investigated the effect of CNTs concentration (0.01 wt% and 0.1 wt%), with different loading of surfactant Triton X-100, (0.0%, 0.2%, 0.5% and 1.0%) on strain sensing in terms of sensitivity and linearity based on electrical resistance data. The CNTs were synthesised directly using an injection floating catalyst chemical vapor deposition (ICCVD) process and their quality was characterised by Raman spectroscopy and scanning electron microscopy. Only the epoxy modfied with 0.1 wt% CNTs exhibited sufficient piezo-resistivity for the resistance measurements, and those with 0.01 wt% CNTs did not show sufficiently measurable conductivity so were excluded in our study, since their CNTs were highly entangled, and conductive network failed to be established. It was observed that, with 0.1 wt% CNTs, adding 0.5% content of the surfactant improved gauge factor. With more content of the surfactant (1.0 %), surprisingly, we observed a drop of gauge factor by the order of two. Therefore, by comparing the conductivity change between 1.0% and 0.5% surfactant, we postulated that the relatively high content surfactant has reached critical micelle concentration, and negatively affects CNTs dispersion state. The research presented in this article shows that moderate content of surfactant could improve piezoresistivity gauge factor while excessive surfactant could cause adverse effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.