We report the engineering of a DnaE intein able to catalyze rapid C-terminal cleavage in the absence of N-terminal cleavage. A single mutation in DnaE intein from Nostoc punctiforme PCC73102 (NpuDnaE), Asp118Gly, was introduced based on sequence alignment with a previously engineered C-terminal cleaving intein mini-MtuRecA. This mutation was able to both suppress N-terminal cleavage and significantly elevate C-terminal cleavage efficiency. Molecular modeling suggests that in NpuDnaE Asp118 forms a hydrogen bond with the penultimate Asn, preventing its spontaneous cyclization prior to N-terminal cleavage. Mutation of Asp118 to Gly essentially abolishes this restriction leading to subsequent C-terminal cleavage in the absence of N-terminal cleavage. The Gly118 NpuDnaE mutant exhibits rapid thio-dependent C-terminal cleavage kinetics with 80% completion within 3 h at room temperature. We used this newly engineered intein to develop both column-free and chromatography-based protein purification methods utilizing the elastin-like-polypeptide and chitin-binding protein as removable purification tags, respectively. We demonstrate rapid target protein purification to electrophoretic purity at yields up to 84 mg per liter of Escherichia coli culture.
Controlled orientation of a small laccase on a multi-walled carbon nanotube electrode was achieved via copper-free click chemistry mediated immobilization. Modification of the enzyme was limited to only the tethering site and involved the genetic incorporation of the unnatural amino acid 4-azido-L-phenylalanine (AzF). This approach enabled efficient direct electron transfer.
Protein hydrogels have important applications in tissue engineering, drug delivery, and biofabrication. We present the development of a novel self-assembling protein hydrogel triggered by mixing two soluble protein block copolymers, each containing one half of a split intein. Mixing these building blocks initiates an intein trans-splicing reaction that yields a hydrogel that is highly stable over a wide range of pH (6-10) and temperature (4-50 °C), instantaneously recovers its mechanical properties after shear-induced breakdown, and is compatible with both aqueous and organic solvents. Incorporating a "docking station" peptide into the hydrogel building blocks enables simple and stable immobilization of docking protein-fused bioactive proteins in the hydrogel. This intein-triggered protein hydrogel technology opens new avenues for both in vitro metabolic pathway construction and functional/biocompatible tissue engineering scaffolds and provides a convenient platform for immobilizing enzymes in industrial biocatalysis.
As the catalogue of sequenced genomes and metagenomes continues to grow, massively parallel approaches for the comprehensive and functional analysis of gene products and regulatory elements are becoming increasingly valuable. Current strategies to synthesize or clone complex libraries of DNA sequences are limited by the length of the DNA targets, throughput and cost. Here, we show that long-adapter single-strand oligonucleotide (LASSO) probes can capture and clone thousands of kilobase DNA fragments in a single reaction. As a proof-of-principle, we simultaneously cloned >3,000 bacterial open reading frames (ORFs) from E. coli genomic DNA (spanning 400–5,000 bp targets). Targets were enriched up to a median of ~60-fold compared to non-targeted genomic regions. At a cutoff of 3 times the median non-target reads per kilobase of genetic element per million reads, ~75% of the targeted ORFs were successfully captured. We also show that LASSO probes can clone human ORFs from complementary DNA, and an ORF library from a human-microbiome sample. LASSO probes could be used for the preparation of long-read sequencing libraries and for massively multiplexed cloning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.