Conventional optics is diffraction limited due to the cutoff of spatial frequency components, and evanescent waves allow subdiffraction optics at the cost of complex near‐field manipulation. Recently, optical superoscillatory phenomena were employed to realize superresolution lenses in the far field, but suffering from very narrow working wavelength band due to the fragility of the superoscillatory light field. Here, an ultrabroadband superoscillatory lens (UBSOL) is proposed and realized by utilizing the metasurface‐assisted law of refraction and reflection in arrayed nanorectangular apertures with variant orientations. The ultrabroadband feature mainly arises from the nearly dispersionless phase profile of transmitted light through the UBSOL for opposite circulation polarization with respect to the incident light. It is demonstrated in experiments that subdiffraction light focusing behavior holds well with nearly unchanged focal patterns for wavelengths spanning across visible and near‐infrared light. This method is believed to find promising applications in superresolution microscopes or telescopes, high‐density optical data storage, etc.
The structure and components of solid electrolyte interphase (SEI) is crucial to direct the growth of lithium particles. However, it is hard to have control over them. Herein, an SEI that shares the properties of Li2CO3‐rich and LiF‐rich types is realized by using different fluorine phenylphospines, and constructing a Li2CO3/LiF‐rich heterostructured SEI by using tris(4‐fluorophenyl)phosphine (TFPP) as the electrolyte additive. The well‐balanced SEI formed in TFPP‐containing electrolyte has the fast Li+ transport kinetics of Li2CO3, good electron insulator capability of LiF, and strong affinity toward Li+. It can effectively guarantee fast, uniform Li+ flux through the SEI while preventing electrons from the Li anode entering into SEI, and thus realizes uniform and dense Li deposition at the SEI/Li interface. As expected, the Li anode with TFPP‐containing electrolyte achieves a stable Li plating/stripping over 400 h at 1mA cm−2 while the full cell with a high‐voltage LiNi0.6Co0.2Mn0.2O2 cathode also enables long‐term stability with a capacity retention (87.8% after 200 cycles) at 0.1 A g−1 and excellent rate performance.
Multispectral imaging plays an important role in many applications from astronomical imaging, earth observation to biomedical imaging. However, the current technologies are complex with multiple alignment-sensitive components, predetermined spatial and spectral parameters by manufactures. Here, we demonstrate a single-shot multispectral imaging technique that gives flexibility to end-users with a very simple optical setup, thank to spatial correlation and spectral decorrelation of speckle patterns. These seemingly random speckle patterns are point spreading functions (PSFs) generated by light from point sources propagating through a strongly scattering medium. The spatial correlation of PSFs allows image recovery with deconvolution techniques, while the spectral decorrelation allows them to play the role of tune-able spectral filters in the deconvolution process. Our demonstrations utilizing optical physics of strongly scattering media and computational imaging present the most cost-effective approach for multispectral imaging with great advantages
Suffering from giant size of objective lenses and infeasible manipulations of distant targets, telescopes could not seek helps from present super-resolution imaging, such as scanning near-field optical microscopy, perfect lens and stimulated emission depletion microscopy. In this paper, local light diffraction shrinkage associated with optical super-oscillatory phenomenon is proposed for real-time and optically restoring super-resolution imaging information in a telescope system. It is found that fine target features concealed in diffraction-limited optical images of a telescope could be observed in a small local field of view, benefiting from a relayed metasurface-based super-oscillatory imaging optics in which some local Fourier components beyond the cut-off frequency of telescope could be restored. As experimental examples, a minimal resolution to 0.55 of Rayleigh criterion is obtained, and imaging complex targets and large targets by superimposing multiple local fields of views are demonstrated as well. This investigation provides an access for real-time, incoherent and super-resolution telescopes without the manipulation of distant targets. More importantly, it gives counterintuitive evidence to the common knowledge that relayed optics could not deliver more imaging details than objective systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.